Supervised Learning Approach for Distance Based Record Linkage as Disclosure Risk Evaluation

Vicenç Torra¹ Guillermo Navarro-Arribas² Daniel Abril¹

¹Artificial Intelligence Research Institute (IIIA), Spanish council for Scientific Research (CSIC)

²Department of Information and Communications Engineering (DEIC), Universitat Autònoma de Barcelona (UAB)

Joint UNECE/Eurostat Work Session on Statistical Data Confidentiality Tarragona, 26-28 October 2011

• • = • • = •

Record Linkage (RL) for Disclosure Risk evaluation

◆臣▶ ◆臣▶

Distance-based Record Linkage (DBRL)

Per-attribute distance *d_i*:

Aggregation of distances

Record distance

$$d(a,b)^2 = \mathbb{C}(d_1(a,b)^2,\ldots,d_n(a,b)^2).$$

\mathbb{C}	Variable weighting
Arithmetic Mean (d^2AM)	None
Weighted Mean (d ² WM)	Uniform
Choquet Integral (d^2CI)	Fuzzy measure
Mahalanobis Distance (d ² MD)	Covariance-like matrix

3

・ロト ・聞ト ・ヨト ・ヨト

Results

- Determine weights by supervised learning.
- Improves the re-identification percentage: best results for sets where attributes have different protection degrees.

	d²AM	d²WM	d²CI	d²MD
M5-38	0.3975	0.905	0.9125	0.9225
M6-385	0.78	0.9925	0.9975	0.9975

- Learning process determines key attributes (more weighted).
- Computation time has to be considered.