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­ This talk presents a work in progress about the disclosure risk
assessment for business microdata.

­ Due to the experimental stage of analyses, a very simple framework
is considered.

­ To our aims, the Enterprises’ System of Accounts (ESA) survey by
the Italian National Institute of Statistics is suitable for a real data
application:

­ since ESA data are collected by a census on companies (having
at least 100 workers), survey weights issues are ignored.

­ as partial and total non response in ESA survey are coped with
integration by balance-sheets for stock companies and analytical
imputations for the remaining ones, missing value problems are
also ignored.
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­ Several definitions of disclosure risk were proposed because of
different informative gains for the intruder.

­ The kind of the informative gain is often related to the scale of data
(here intended as scenario variables).

­ Neglecting, for simplicity, any issue related to the cognitive purpose
of the intruder, obvious but crucial facts are:

­ for data on a nominal scale different labels imply different
meanings; this circumstance is independent from the statistical
model suitable to approximate the data generating process.

­ for quantitative data any judgment depends on the statistical
model. Different statistical models easily give different answer to
the same crucial question: the existence of a significant diversity
between given quantities.
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Hence, at least two consequences follow:

­ dealing with data on a quantitative scale, the strategy to assess the
disclosure risk cannot be checked out of the assumed data model.
This holds true even if census data are available: in addition “all units
are unique (rare) w.r.t. a small set of quantitative variables” (AA.VV.,
2010).

­ the need of a reliable model as well the impossibility to verify the risk
assessment strategy out of the assumed model, imply in turn the
need of robustness against deviations from the assumptions, so that
estimates can preserve their consistency even if the underling model
is only approximately true (the famous quote of George E.P. Box
seems suitable: “All models are wrong, but some are useful”).
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­ According to the meaning pointed out by Peter J. Huber the term
“robustness” is intended as insensitivity to small deviations from the
assumptions. Hence distributional robustness concerns deviations
from the assumed model,

­ the term “small deviations” regards gross errors in a small fraction of
the observations,

­ robust procedures are superior to approaches like “first clean data,
then use classical estimators”: especially in multivariate settings, false
rejections and false retentions largely affect the distribution of “clean”
data selected by a two step strategy,

­ the term “superior”, used above, means that consistent estimates of
the parameters featuring the “idealized model” are achieved even if
the latter is only approximately true.
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Consider
­ an estimator T,
­ a sample X of n observations on p variables,
­ the set of all possible corrupted samples X obtained substituting m

original data points,
­ the quantity

Then, the finite sample breakdown fraction of T at the sample X is

Hence the higher n(T, X), the higher the robustness of T at the sample
X. A breakdown fraction greater than 0.5 seems meaningless: the
concept of data contamination should not be referred to the majority
of sample units.
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­ Robust methods, as intended here, work with parametric models, but
the latter are no longer supposed to be exactly true.

­ As business microdata are featured by (estimated) skewness and
kurtosis values not consistent w.r.t. the assumption of multivariate
normal distribution, a suitable parametric model is necessary.

­ Finite Gaussian mixtures can approximate a wide range of
distributional shapes and allow a simple extension of robustness
findings about normal models.

­ Robust finite Gaussian mixtures are encompassed by the class of
Trimmed Likelihood Estimators
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­ Let  be a log-likelihood function and (i) a permutation of indices
such that:

­ Given h n, the maximum trimmed log-likelihood estimator of is:

­ An iterative process gives an approximated solution:

1. at the rth iteration define

2. sort in descending order and select the first h indices

3. compute and return to step 1
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­ Steps 1, 2, 3 constitute on the whole a Concentration step (C-step):
­ given , a C-step select the subset of h observations having the

larger log-likelihoods,
­ given that subset, a new estimate of is computed,
­ each C-step achieves a non decreasing value of the objective

function Q.

­ Considering a p-variate finite Gaussian mixture of G components:
­ parameters are { 1,,G,1,,G,1,,G },
­ by using an information criterion, i.e. the BIC, each C-step can

select the best model between candidates featured by different
values of G and parameterizations of g,

­ for { GG } a breakpoint not less than (nh)n is
achieved when
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Assign each of the nh observations to the mixture component which
minimizes the squared Mahalanobis distance; notice that assignation
is only used to estimate the total number of units belonging to each
component. For g1,,G:

­ let ag be the number of units (from the nh ones) assigned to
the gth mixture component

­ keep the the number of units hg allocated to the gth component
by the trimmed likelihood maximization as well the estimated
total number of its units ng  hgag,

­ the (approximate) correction which makes the estimate of g
consistent to the normal model (Tallis, 1963) is:
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The correction of for small sample bias is based on the following facts:

­ multivariate estimators of location and shape are affine equivariant; If
A is a non singular pp matrix, c a p1 vector and X=(x1,…,xn):

­ Mahalanobis distances are invariant to affine transformations and
simulating data from p-variate standard normal, should be 1

­ hence, by k Monte Carlo simulations the correction factor would be

Usually, formulas to approximate the correction factor at any n and p are
used (Pison, Van Aelst, Willems, 2002) .
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For g1,,G, define the robust squared Mahalanobis distances as

Well known distributional results give:

­ for each of the h units involved in robust estimations (Wilks, 1963)

­ for each of the trimmed nh data points (Chew, 1966)
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­ Since extreme observations are approximately independent from
location and scale estimates, the intersection between multiple tests
sharing the same estimates should be negligible.

­ with probability 1, no observation lies in the critical region if

­ to improve the power of the test, if the null is rejected at level ,
then each observation is tested at level :

­ Observations whose maximum p-value over g=1,,G, falls in the
critical region of that test are labelled as atypical.
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­ Outcomes related to the gth mixture component can be:

­ ng,1/0 is the I error type, indicated as “swamping” (S), and is controlled
by the level of the test

­ ng,0/1 is the II error type representing the amount of “masking” (M) and
depends on the power of the test,

­ the proposed strategy allows an increase of swamping to alleviate the
amount of masking if the absence of contamination is confuted.

ngRngRTotal

ng,1ng,1/1ng,0/1H0 False

ng,0ng,1/0ng,0/0H0 True

TotalH0 rejectedH0 not rejected
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­ Clean data are mixtures of two spherical normal:

­ n90 or 180, p6, g={01p, 2c1p}  with c=( p)1/2, g={5/9, 4/9}

­ Added contaminated data points are 20% of the smallest clean component, according to
three kind of contamination: separate, radial, diffuse:

Fig 1 Two dimensional examples: separate, radial, diffuse contaminations (symbol ).

­ 500 Monte Carlo replicates were performed, using n0.25 and 0.05

2
, 0.99p

A simulation experiment
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Table 1 Expected fractions of I and II type errors (|S|n and |M||cont. data points|).

­ Swamping is negligible. Tests performed on clean data give an
expected fraction of 0.0002 false rejections when n90 and no
swamping when n180.

­ Masking is evident for diffuse and radial contaminations when n90:
­ the small sample size affects the power,
­ the small number of contaminated observations inflates the

respective proportions.

­ On the whole, considering the severity of settings, the performances
seem acceptable.
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­ Data of 2004 Enterprises’ System of Accounts survey are stratified by
economic activity (NACE Rev. 1.1) and size class.

­ A set of 10,313 records related to units selected according to the
main/unique production line is analyzed.

­ The assumed disclosure scenario involves six variables from the
profit loss account:

­ Turnover,
­ Cost of materials, power consumptions and goods to resale,
­ Cost for services,
­ Staff costs,
­ Number of workers,
­ Earnings.

­ By using NACE 4 and two size classes in term of workers,
[100,i499][500, +), 660 strata follow.
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Table 2 Quantiles of stratum sizes (four NACE digits and two size classes).

­ For reducing data sparsity it is possible to collapse strata having few
units into a pooled stratum.

­ When necessary, NACE digits are step by step decreased from
4 to 1; finally, if a stratum is still unsatisfactory, classes W are
ignored; thus, the 1st digit of NACE represents the lowest
admissible data resolution.

­ In a given step, a statistical unit belonging to a stratum which
unfits the threshold is assigned to the next larger stratification
level; the latter does not include units previously allocated into
strata above the minimum number of observations.
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Table 3 Summary about collapsed stratification.

­ A threshold of 80 observations (selected by trial and error to
attenuate size differences), gives 76 strata.

­ Without resorting to the collapse of lighter strata, estimations would
be not feasible or misleading.

­ The price to pay is the voluntary aggregation of heterogeneous
observations.

Table 4 Quantiles of collapsed stratum sizes.
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­ The total number of enterprises declared not consistent w.r.t. the
distribution of the remaining onesis 2143.

­ Conditionally on respective strata, the fraction of candidate atypical
units is showed in table 5. The results match the conjecture large size
companies are featured by weak exchangeability.

Table 5 Quantiles of  the number of “atypical” units divided by the stratum size.

­ By using the original strata definition, NACE 4 and two size classes in
term of workers, table 6 shows some order statistics about the size of
strata to whom suspect units belong. No more than 25% of those
units fall in the first 70% of original strata.

Table 6 Quantiles of sizes featuring original strata the “atypical” units belong to.
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Conclusions
- The detection of statistical units lacking in consistency w.r.t. the

process generating the majority of observations, represents a
relevant first step to assess the disclosure risk of business
microdata.

- In a simplified framework (ignoring survey weight and missing
value issues), robust finite Gaussian mixtures and strata
collapsing to perform reliable hypotheses tests are proposed.

- As tests are uninformative about the kind of data heterogeneity,
any judgment requests further analyses and can imply subjective
choices.

- Matters not investigated here will be dealt in future works as well
further studies to achieve a global strategy on disclosure risk
evaluation.

Tarragona, Spain, 26-28 october 2011
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