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Abstract: Many national statistical offices  are looking to improve their output dissemination strategy by enhancing 
access to microdata through the use of remote access analysis servers.  In this approach, results of statistical analyses 
or tabulation of the data are released in a form that will not enable any microdata to be linked to individuals.  
Typically, the original data are altered before release for example, by perturbing, coarsening or other techniques of 
statistical disclosure limitations. 
The Australian Bureau of Statistics (ABS) is developing a remote access service which will enable users to submit 
requests for tabulation of count data, and analysis outputs from statistical models fit by using the dataset, while 
ensuring confidentiality of individuals’ information is strictly maintained.    In this paper we give an overview of the 
methodology used for protecting confidentiality for the datasets.  The methodology has to be robust enough to support 
a wide range of queries and analyses, against risks from different kinds of attacks, such as differencing, 
transformations, analysis of residuals and outliers, and other inferential disclosures. 
The remote data access server has two components: a Survey Table Builder to support requests for tabulation output, 
and an Analysis Server for regression output. The Survey Table Builder methodology   utilises a range of perturbation 
and suppression (for very sparse tables) techniques for disclosure control.  Weighted counts are automatically 
confidentialised to prevent disclosure through differencing attacks and repeated requests for identical tables.  The 
method extends that which was used by the ABS for the Census Table Builder of the 2006 Population Census. 
The Analysis Server that will enable external users to submit queries remotely to analyse de-identified microdata.  It 
will protect against the identification of respondents through a number of features that include query control and 
perturbation methods that are applied to model parameter estimates, variances and diagnostics. As with Table Builder, 
only confidentialised, aggregate outputs are permitted. The techniques for disclosure control involve perturbation of 
the score function, imposing some restrictions on the type of analysis performed and coarsening diagnostic 
information such as residual plots. The Analysis Server will allow users to undertake exploratory data analysis, 
perform data sub-setting and variable transformations, undertake a range of common statistical regression analyses and 
manage their user workspace for storing and printing analytical outputs and transformed datasets.   
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Introduction  
 
Vast amounts of micro-data are collected by agencies  from Censuses, surveys and administrative 
sources. Such micro-data can be used in the development and evaluation of policy for the benefit, 
or utility, of society.    For this reason, there is very strong demand from analysts, within 
government and universities, to access such micro-data.    When allowing analysts access to its 
micro-data, the agency is often legally obliged to ensure that the risk of disclosing information 
about a particular person or organisation is acceptably low.  Managing the risk of disclosure is 
commonly referred to as Statistical Disclosure Control (SDC).  Even after removing personal 
identifying information, such as name and address, from the micro-data the risk of disclosure 
remains (see  for example Willenborg and De Waal, 2001). 
 
Methods of SDC for micro-data include reducing the level of detail, replacing real values with 
synthetic values (see for example Reiter, 2002), sub-sampling, micro-aggregation, swapping 
attributes between records, and perturbing categorical  values. Mathews and Harel (2011), Duncan 
and Pearson (1991) and give good summaries of many of these, as well as a few more.  However, 
these methods may reduce the utility of the micro-data in the following ways: 



• Perturbing, or adding noise to, variables introduces measurement error which can 
significantly reduce the accuracy of estimates and the power of hypothesis tests. 

• Statistical modelling may be more complicated (see Little, 1993), if it takes into account 
the fact that variables may not be equal to their true values 

• Replacing true values with synthetic values, generated from a model, can be difficult and 
time-consuming since social relationships are often subtle and complex. 

• Releasing a single set of micro-data, after applying SDC, is in some respects a one-size-
fits-all solution. For example, the ABS  releases micro-data from a 1% sub-sample of its 
national Census of Australian Households.  A 1% sub-sample could amount to a significant 
loss of utility for analysis about small areas but not for Australia-level analysis.   

 
Given the recent explosion in the amount of administrative data, facilitated through technological 
advances, the risk of disclosure for micro-data is arguably ever increasing.  One way of potentially 
improving the trade-off between utility and disclosure risk is a remote analysis server.  A simple 
model for a remote analysis server is: 

A. An analyst submits a query, via the internet, to the agency's analysis server 
B. The analysis server processes the analyst’s query on the sensitive micro-data.  The 

statistical output (e.g. regression coefficients) from the query is modified for the purpose of 
SDC. Some output may be restricted on the basis that it could allow an analyst to 
reconstruct the attributes of an arbitrary record.  

C. The analysis server sends the modified output, via the internet, to the analyst.  
 
Some advantages of a remote analysis server are: 

• although the statistical output is modified, it is based on the real micro-data. This means 
complex relationships in the micro-data are essentially retained.  

• the degree to which a particular  output is modified can depend upon the output  itself. For 
example, estimates at a broad  level may require proportionally less modification than 
estimates at a fine, or small area, level. Since an analyst is  restricted from viewing the 
attributes of any record, less modification is needed than would otherwise be the case.   

• the impact of the modifications on the output  can be broadly indicated to the analyst.  If 
the impact is large the analyst may decide to ignore the results altogether. 

• once the server is set up, it can process multiple analyses in real time.   
• all submitted programs can be logged and audited. If an audit concludes an attempt at 

disclosure was made, the agency can revoke the analyst's access to the server and take legal 
action. 
  

There are some disadvantages of a remote analysis server: 
• Some statistical outputs may be aggregated (e.g. record-level residual plots may be 

replaced with box plots) or perturbed (e.g. regression coefficients), and others may be 
restricted altogether. 

• The analyst may be restricted to use only analysis techniques supported by the server 
• Analysis through a remote server may take longer than if the micro-data were available on 

the analyst's personal computer.    
 
There has been some work on managing the disclosure risk of analysis and tabular output,  (i.e. on 
point (B) above) . In respect to analysis output see Gomatam et. al (2008), Lucero and Zayatz 
(2010), Bleninger et. al (2010) and Sparks et. al (2008) and in respect to tabular output see  
Shlomo (2007).  The goal of this literature is to protect against data attacks, which involves an 



analyst using output from an analysis server to reconstruct attributes for one or more records 
which, if successful, could be used to attempt disclosure by linking to other micro-data.  
 
The Australian Bureau of Statistics (ABS) is developing a remote access service which will enable 
users to submit requests for tabulation of count data, and analysis outputs from statistical models 
fit by using the dataset.  Our main approach to disclosure control is by perturbation of the outputs, 
supplemented by some limitation of potentially identifying information.  Sections 2 outline the 
ABS’ method of managing disclosure risks for count tables, and Section 3 describes the approach 
for protecting analysis output.  Method for protecting tables of continuous measurements is being 
implemented and will not be discussed in this paper. 
 

2. Count Data 
 
Cells in a table are either internal or marginal.  The count for a marginal cell is a sum of two or 
more other counts appearing in the table. If a cell is not a marginal cell it must be an internal cell. 
We now describe the ABS’ method for perturbing unweighted (section 2.1) and weighted counts 
(section 2.2) for internal and marginal cells of a table. 
 
2.1 Census Table Builder  
Here we describe the method of perturbing unweighted counts as implemented in Census Table 
Builder (CTB), an ABS remote server which allows analysts to remotely request contingency 
tables to be calculated from the Australian Census’ micro-data. The perturbed tables are 
automatically returned to the analyst, with generally no intervention from ABS staff.  The analyst 
can define the dimensions of the table and the attributes of the records contributing to the table 
with only limited restriction (only tables with a high percentage of cells with counts of 0 or 1 are 
not released). 
 
Denote the i th unweighted  sample count for an internal cell in a contingency table by 
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i aa L≤ , and eL  and aL  are positive integers specified by the agency. Clearly, 

the difference between in  and *
in  is restricted to be less than a eL L L= + .   The *

ie  s represent the 
random integer perturbation of the i th cell count. The *

ia  s are derived so that the internal and 
marginal counts are consistent and so that the changes to the marginal counts  are bound (for 
details see Appendix). 

Define  ( )*Var  and ( )*E to be the variance and expectation with respect to the perturbation 
distribution of *

ie , which meets the following criteria: 

a) ( )*
* 0iE e =  



b)  ( )* 2
* iVar e σ=   

c)  ( )* *
*Cov , 0    i je e if i j= ≠  

d)  whenever the same set of records contribute to a cell count, the value for ie  will always be 
the same (see Fraser and Wooton, 2005).  

e)  *
ie  is an integer 

 
Criterion a) ensures the count data are unbiased over the perturbation distribution. Criterion b) 
means that any cell count has a fixed perturbation variance. Criterion c) ensures that differencing 
two cells counts does not remove the effect of perturbation.  Criterion d) ensures the effect of 
perturbation is not removed by repeatedly requesting the same cell count. 
 
Table 1 gives an illustrative example of tabular counts before and after perturbation. Perturbed 
counts are asterisked while original counts are not. For example, a true count of 1 is perturbed to 3. 
 
Table: Example of tabular counts before and after perturbation. 
 
 Treatment A Treatment B 
 Success Trials Success* Trials* Success Trials Success* Trials* 
Clinic 1 1 5  3 6 10 20 9 17 
Clinic 2 9 10 9 11 5 20 4 18 
Totals 10 15 12 17 15 40 13 35 
* Perturbed counts 
 
2.2 Survey Table Builder  
In 2011 the ABS is implementing an extension to Table Builder, called Survey Table Builder 
(STB), which applies SDC to survey-weighted count data. Denote the i th weighted count in a 
contingency table by i j ijj

N d δ= ∑ , where jd  is the  survey weight for the j th record. The 

corresponding perturbed count is *
iN = * *

i i id n A⎡ ⎤ +⎣ ⎦
% , where 1

i i id n N−=%  is the average weight for 

records belonging to the i th cell, *
in  is the perturbed sample count described previously, [ ]x  

rounds x  to the nearest integer, and *
iA  performs an analogous function to *

ia  but for weighted 

counts (for details see Appendix). STB will not release any information about id% , *
ie , *

in  or iN  to 

the analyst. If id% =1 for all i, then the CTB and STB methods of SDC are equivalent. Marley and 
Leaver (2011) studied the measures of risk and utility associated with STB. 
 

3.  Analysis Server 
 
3.1 Without Statistical Disclosure Control (Standard Case) 
First we consider the standard case for estimating regression coefficients in a regression model. 
Consider micro-data from which an analyst specifies an outcome variable y and K covariates  x, 
where the data are {( , ) : 1,... }j jy x j n= =d . Consider fitting a regression model with parameter β  



using an unbiased estimating function ( )H β  (see Chambers and Skinner, 2003). In particular we 
consider the estimating equation  
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where ( )( )j j jf E y x=β  and ( )jG β  is a vector of order K with k th element ˆ( )jkG β  which is a 

function of β  and jx  but not of jy .  The solution to ( )H = 0β   gives the standard estimate , β̂ , of 
the regression coefficients.  

Data attacks involve obtaining θ̂  from one or more queries in order to reconstruct attributes for an 
individual record. These attacks can involve differencing , leveraging a single record, isolating a 
record with a covariate, and by making inferences from a highly accurate model. These are well 
discussed for example by Gomatam (2008). Data attacks can of course use other outputs, such as 
plots, diagnostic statistics, p-values in a data attack. 
 
When designing a set of perturbations and restrictions to apply to a set of analysis output, it 
quickly becomes clear that a series of regressions designed to find the optimal model could be 
indistinguishable from a sophisticated data attack. Therein lies the challenge: not restricting the 
former while thwarting the latter. 
 
3.2 With Statistical Disclosure Control 
 
Below we discuss the approach ABS is considering to implement in its remote analysis server.   
 
3.2.1 Estimation of Parameters 
 

Instead of solving ( )H = 0β  and releasing β̂ , the server solves 

 

 *( )H =β E          (1) 

 

 and releases the resulting estimator *β̂ , where * * *
1

* ( , )...,k KE E E ′=E  are perturbations  introduced 
for the purpose of SDC, * *

k k kE u e= , *
ku   is the uniform distribution on the range (-1,1), and 

( ){ }ˆ ˆmax ( ) ( )k j jk j je G y f= −β β  is the maximum influence a record may have on the k th 

estimating equation.  For example, for the case of binary variables and the logistic model 1ke = . 
The distribution of the perturbations, *

kE ,  are independent and if the same model is fitted the same 
value of *E is used- this stops an analyst estimating β̂  by fitting the same model a number of times 
and averaging over the regression parameters obtained from solving (1).  
 



The size of the perturbation is designed to be of sufficient size to mask the contribution of any 
record to the estimating equation. Applying the perturbation to the score function is important, 
since this is where β̂ imposes a constraint on the data values. 

 
3.2.2 Inference 

To make valid inference with *β̂ an analyst will need to account for the variance from both the 
model and the perturbation of the estimating equation.  The variance  of *β̂ is  

( ) ( ) ( )* *
* *

ˆ ˆ ˆ
m mV V= +V β β β   

where ( )ˆ
mV β  is the variance of β̂  due to the model (i.e. the absence of any perturbation) and 

( )*
*

ˆV β  is the variance of *β̂ due to the perturbation. We propose estimating ( )ˆ
mV β  using the 

delete-a-group Jackknife (Rao and Wu, 1988). A benefit of the Jackknife is that it is simple to 
calculate and is unbiased when the micro-data have been collected from a sample with a complex 
design (e.g. clustered sampling), as is the case for many ABS surveys.  The Jackknife method 
involves allocating all selection units to one and only one replicate group in the same way that the 
sample was selected from the population.  Using a similar approach to the sandwich variance 
estimator (see Chambers and Skinner, 2003 pp.105), we derive ( )*

*
ˆV β = ( ) ( )1 1− −′ ′X WX D X WX , 

where *
*( )Var=D E . 

 
We argue that the uncertainty in the Jacknife variance estimator(see  pp.196  Shao and Tu, 1996), 
due to the allocation of selection units to replicate groups, is such that the total variance, ( )*

*
ˆ

mV β , 

cannot be used in a data attack. 
 
3.2.3 General Restrictions 
Several authors have noted that fixed-distribution perturbation (as used above) alone is not 
sufficient to protect analysis outputs in the context of multiple queries. Approaches to managing 
the additional risks have included imposing restrictions into the analysis server (see Gomatam et 
al., 2005; Sparks et al., 2008) On the other hand, when designing a set of restrictions to manage 
disclosure risk, it quickly becomes clear that a series of regressions designed to find the optimal 
model could be indistinguishable from a sophisticated data attack. Therein lies the challenge: not 
restricting the former while thwarting the latter. In this subsection, we mention a set of restrictions 
that do not defend against a particular data attack, but are designed to significantly hinder a data 
attacker while only making a minor reduction in utility. These general restrictions include: 

• n > 50.  
• n/K > 10 
• K>5 
• models can be fitted to a subset of records, where the subset is defined by at most 4  

(always less than K) 
• binary variables originally on the micro-data 
• new binary variables can only be created from two other binary variables that are originally 

on the micro-data. 
• new continuous variables can be only be created by using certain transformations 
• variables must be non-zero for at least 15 records.  



• for models with only binary covariates, the number of covariate patterns in x must be 
greater than 50 

• ′X X  must be full rank, where 1( ,... ,.... )j n ′=X x x x  and jx  is the K column vector of 
covariates for the j th record. 

The values (e.g. 50) used in the above restrictions are used for illustration and can of course be 
changed. 
 
3.2.4 Additional Attack-Specific Restrictions 
As mentioned above, there are some well documented data-attacks (see for example, Gomatam 
2008).  It makes sense to impose restrictions, in addition to those mentioned in section 3.2.3, to 
explicitly defend against them. These restrictions are not discussed here, for space, but can be 
found in Chipperfield and O’Keefe (2011). We do, however, briefly describe three attacks for 
which explicit defences are constructed. 
 
One such attack is called a differencing attack. A differencing data attack involves fitting the same 
model to two sets of records that are identical except that one record is dropped from one of the 
sets. Differences in the regression coefficients from the two models could be used in an attempt to 
reconstruct attributes of the dropped record.  For example, if the covariates of the dropped record 
are known to the attacker, the change in the regression coefficients would allow a binary outcome 
variable for the dropped record to be derived. 
 
Another such attack involves fitting different models to the same set of records and their attributes 
(i.e. the same data set) by: 
 
1. Swapping the choice for the outcome variable 
2. Using a different link function (e.g. linear, logistic and probit) 
3. Using variables that are different transformations of the same attributes 
 
Each model imposes K constraints on a set of records' attributes, which are unknown to the 
analyst. The aim of this attack is to impose enough constraints so that it is possible to solve for the 
values in the underlying data set.  
 
 3.2.5 Diagnostics 
 
A range of test statistics (see Hosmer and Lemeshow, 2000) are available to assess the model 
assumptions (e.g. normality of residuals) and model fit (e.g. AIC, R-squared).  Again, when 
releasing such statistics the agency needs to balance the disclosure risk against the utility. Ideally, 
an analyst’s model selection should not be influenced by statistical disclosure control.  
 
The approach to SDC for the estimate of the dispersion parameter or diagnostic statistics closely 
follows that for regression coefficients.  Denote such a parameter or statistic by * *ˆ ( , )t t= β d . 
Instead of releasing * *ˆ ( , ) t t= β d we release, 

 
** * * *ˆ  ( , ) t t u s= + β d  

where *u  is a random variable on the range (-1,1) and *ˆ( , )s β d  bounds the maximum influence that 
a single record in d can have on the statistic *t given *β̂ .   



 
Diagnostics that involve plotting individual record values (e.g. residual plots) will be aggregated in 
some way, following Sparks et. al (2008). For example, Q-Q plots will be replaced by a smoothed 
non-parametric regression line and residual plots with be replaced by parallel box plots. 
 
Appendix 
Denote the internal and marginal cells of a table by t=1, 2, ..., C, C+1,..., T, where t=1, 2, ..., C 
denotes the internal cells of the table. Denote the t th cell count by tn . Instead of releasing tn , TB 
releases * * *

t t t tn n e a= + +  which is obtained in two steps. The first step involves calculating the 
preliminary counts * *

t t tm n e= + , where *
te  has properties a)-e) from section 2.2. The table’s 

preliminary counts are not consistent: sums of preliminary counts for internal cells are not 
guaranteed to equal corresponding preliminary marginal counts. The second step involves finding 
the value for *

ta  that so that 

 The table with counts *
tn  is consistent and *

t aa L≤  for all l=1, ..., L. This means no preliminary 

count, for a marginal or internal cell, is changed by more than aL . 
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