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Abstract: Many statistical agencies nowadays operate or envision tools for ad hoc creation and 
visualization of aggregate tables, ideally with web-access facilities. Users should be able to easily 
create their own customized tables. However, especially with heavily skewed business data, disclosure 
control issues usually are a big obstacle in this context, hardly solvable by traditional methods like cell 
suppression. For population counts data the Australian Bureau of Statistics has implemented a SDL 
method based on post-tabular noise addition. The US Census Bureau on the other hand has developed 
a method based on pre-tabular multiplicative noise to protect enterprise tabular data. 
This paper proposes a new method based on an idea for post-tabular stochastic noise. The method 
proved to give encouraging results when tested on tabulations of German business tax statistics. 

1 Introduction 
Facilities to generate user requested tables in a convenient and flexible way should 
be part of a modern data production process in a Statistical Office. The problem is 
how to ensure non-disclosiveness of the tabular outputs, especially in the case of 
strongly skewed magnitude tabular data. Traditional methods like cell suppression 
have proven to work well when the aim is to protect a rather fixed set of not too 
detailed tables. Otherwise, it becomes difficult to manage risks of disclosure by 
differencing problems. Perturbative SDC methods may offer a way out of the 
dilemma. 

The first question with a perturbation method is whether to perturb the input, i.e. the 
underlying micro-data, which is what pre-tabular methods do. Or to rather perturb 
the output, i.e. the tabular aggregates, which is what post-tabular methods do. One of 
the challenges when designing a post-tabular perturbation method is to ensure 
between tables consistency. When tables present inconsistent results it may damage 
the users trust in the data and may also lead to disclosure risk. Disclosure risk can 
arise for instance when the mean of inconsistently perturbed but logically identical 
sensitive values is an unbiased estimate of the true value. So by “consistency” we 
mean that different queries should lead to an identically perturbed result whenever 
they are logically identical, i.e. referring to the aggregate value for the same variable 
and the same group of respondents. (Fraser and Wooton, 2006) propose a 
methodology to achieve this by using microdata keys. As for the perturbation, they 
propose (in the context of frequency counts data) to add noise with zero mean and 
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constant variance. The method is therefore certainly not suitable for skewed business 
magnitude data. 

In the context of enterprise data sets, (Evans et al., 1998), and (Höhne, 2008) propose 
several variants of pre-tabular (multiplicative) random noise for masking microdata, 
i.e. a pre-tabular method. 

Combining ideas of those two different concepts, this paper drafts a new post-tabular 
perturbation method. The paper is organized in 5 sections. Section 2 introduces the 
methodological concept. One disadvantage of the method is that it is not additive. 
Section 3 is concerned with this issue. A way out is to extend the method by a 
rounding strategy which gives users of the data a natural explanation for lacking 
additivity (“rounding effect”), and also provides a local measure of information loss 
due to perturbation. Empirical results are presented in section 4. The paper finishes 
with a summary section and some conclusions. 

2 Pre- and post-tabular stochastic noise for masking skewed 
magnitude data 

There is a wide range of literature on micro data masking using random noise. For 
the sake of simplicity, in this paper we use as starting point a simple variant of 
multiplicative stochastic noise in the formulation of (Höhne, 2005, c.f. 
“Zufallsüberlagerungsmodell 3”). Section 2.1 briefly outlines the basic concept of 
the method. Section 2.2 introduces a new post-tabular variant of the approach, to be 
used in combination with the micro-data keys concept of the ABS method. In section 
2.3 we compare theoretical properties of the two approaches. 

2.1 A simple pre-tabular stochastic noise masking method 
The idea of the method in (Höhne, 2005) can be outlined as follows: the disseminator 
specifies two parameters 0μ  and 2

0σ . Variable value yi  in the ith micro-data record is 
masked by multiplying it with (1 ±( 0μ  + zi)), where zi is drawn from a N(0, 2

0σ ) 
distribution. Parameter 0σ  should be chosen relatively small compared to 0μ . This 
means we multiply the data alternatively by (1 + 0μ )  or (1 - 0μ ) , approximately. In 
that sense parameter 0μ  determines the strength of the masking. (Höhne, 2005) 
suggests to select the deviation sense according to the following algorithm: Sort the 
records according to the values of variable y in descending order. Let the deviation 
sense be positive, when the total of the perturbed previous values is smaller than the 
corresponding original total and negative otherwise. Compared to a random selection 
of deviation senses this scheme helps to better preserve the grand total. 
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2.2 A simple post-tabular stochastic noise masking method 
An advantage when masking table cell values rather than micro-data values is that 
cell sensitivity can be taken into account. The masking method lined out in the 
following requires a certain minimum deviation between true and masked cell value 
for sensitive cells. We can, for example, require that the masked cell value is non-
sensitive according to the sensitivity rule employed. 
This can be achieved by masking the largest contribution y1  of a table cell with 
original value Torig  and replacing it by y1 post(T) when computing the perturbed cell value 
Tpost : Just as in 2.1 we choose parameters 0μ  and 2

0σ . When a cell c is sensitive, we 
multiply the largest contribution y1 by rc , where rc := (1 ± ( 0μ + abs( zc ))) (zc drawn 
from a N(0, 2

0σ ) distribution2). When cell c is non-sensitive, y1 is multiplied by only 
(1 ± (abs( zc ))). This way, the perturbation of sensitive cell values will be much 
stronger than that of non-sensitive cell values. When using the p% sensitivity rule, 
we choose 0μ := 2*p/100. Then the noisy value Tpost of a sensitive true value Torig  will be 
non-sensitive, i.e. |Tpost - y1- y2| ≥ p*y1, (y1 and y2 denoting the two largest contributions to 
Torig)3. Finally, we determine the deviation sense according to the deviation sense that 
would result for this cell when using the pre-tabular method of 2.1. See (Giessing, 
2011) for a rational behind that. 
In order to achieve between-tables consistency, i.e. to achieve that cells which are 
logically identical will always have the same masked cell value, we use the random 
mechanism proposed in (Fraser and Wooton, 2006). For our experiments, we used 
the SAS random number generator which produces pseudo random numbers 
distributed uniformly over [0;231-1]. We assign such a random key to each record in 
the microdata file, the “microdata keys”. When computing the tables, also the 
random keys are aggregated. The result is then transformed back into a random 
number on this interval by applying the modulo function, 

1231mod
−

. If the same group 
of respondents is aggregated into a cell, the resulting random key will always be the 
same. Cells which are logically identical thus have identical random keys. This key is 
then used for drawing the random noise zc. 

2.3 Statistical properties of the two masking methods 
In the following, it is assumed that the effect of the scheme for assigning perturbation 
senses is negligible, i.e. we assume random selection of the deviation sense with 
                                                 
2 Note, abs(zc) are then distributed according to a normal distribution truncated at zero. 
3 Proof: With denotations from above, and because of our choice of parameter 0μ  it holds: 
(1)   |y1 - y1post(T)| ≥ uμ |y1|  ≥ 2∗(p/100)∗|y1|. Using reverse triangle inequality we can say |Tpost - y1- y2| = 

|(Torig - y1- y2)-(y1- y1post(T)| ≥ | |Torig - y1- y2|-|y1- y1post(T)| | = | |y1- y1post(T)| - |Torig - y1- y2| . If a cell value is 
sensitive according to the p%-rule, we have |Torig - y1- y2| ≤ (p/100)∗|y1|. Hence, because of (1), 
|Tpost - y1- y2|  ≥ |2��p/100 - �p/100| |y1| = p| |y1| . 
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probability of ½ for both, positive and negative sense. It is then easy to see (c.f. 
Giessing, 2011, appendix) that both masking methods will provide unbiased 
estimates for all cell values. For a first theoretical comparison of information loss 
caused by either of the two methods, we consider the variance of the noise on the cell 
level. Denoting by tpre and tpost the difference between true and perturbed cell value 
and by 2

preσ  and 2
postσ  the noise variances, it is straightforward to show (see Giessing, 

2011, appendix) that the cell level noise variances are  
(2.3.1) V(tpre ) = 2

preσ Σi=1,...,n ( 2
iy ) in case of the pre-tabular method, and 

(2.3.2) V(tpost) = 2
postσ  2

1y  for the post-tabular method. 
(Giessing, 2011, appendix) also proves that the noise variances are 
(2.3.3) 2

preσ  = ( 2
0σ  + 2

0μ  ) , and  

(2.3.4) 2
postσ = ( b 2

0σ  +(Is 0μ  + a 0σ )2 ). The positive constants a and b are a=2∗(2π) 1/2~0,8 , 
b= (2π-4)/(2π)~0,36 , and Is is a binary variable (Is = 1 for sensitive cells and zero 
otherwise). Because of a2+b=1 it turns out that the noise variance for non-sensitive 
cells is 2

postσ = 2
0σ  . So, for non-sensitive cells, unless 0μ  is chosen to be zero, V(tpost ) < 

V(tpre ). I.e., the cell level noise variance is smaller for the post-tabular method. Note 
that this is not generally true for non-sensitive cells. 

3 How to deal with non-additivity? 
If table additivity is really needed, for instance if a user wants to use the output of the 
tabulation as input to further analysis which eventually requires additiviy, there are 
ways to restore table additivity. Leaver, V. (2009) points out that restoring additivity 
can be achieved by iterative methods. Alternatively, a linear programming based 
method could be considered, like e.g. the Controlled Tabular Adjustement package 
of (Castro, González, 2009). The algorithm restores additivity to a table, minimizing 
an overall (L1-norm-) distance to the table provided as input. The distance function 
implemented is a weighted sum of absolute per-cell-distances. Weights are provided 
by the user of the software. The user can define for each cell upper and lower bounds 
on the deviations (‘a priori bounds’), and can define a set of cells labelled as 
‘sensitive cells’. For each sensitive cell, the user defines a ‘protection interval’. The 
adjusted cell value is not allowed to take a value inside the protection interval. 
Computational complexity of the problem depends strongly on the number of 
sensitive cells. For empirical experiment, we therefore did not flag any cells as 
“sensitive”, but gave large weights to them: The post-tabular method always changes 
the values of sensitive cells sufficiently, if parameters are defined properly (see 
footnote 3). It should therefore be enough to avoid that the adjustment tends to 
change those perturbed data back to the original data. Adding suitable a priori 
constraints to the problem ensures that the adjusted values are not too far off from the 
noisy cell values.  
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Of course one might consider using the adjustment methodology without previous 
random perturbation, flagging sensitive cells to have their adjusted values forced out 
of the respective protection intervals. But unless this yields a fully consistent data 
base4, there is then a risk that by averaging (adjusted) cell values over a number of 
(adjusted) tables a user can recover the original data. With a previous random 
perturbation, such an approach will only recover the underlying perturbed table, as 
pointed out in (Leaver, 2009). 
Anyway, unless the adjustment yields a fully consistent data basis which is not an 
option considered in this paper, it creates inconsistency and may further increase the 
information loss caused by the perturbation. If users do not really need an exactly 
additive table, and non-additivity is only to be avoided because it might be irritating 
to users, there might be a better way out by taking up a rounding strategy. The 
“rounding effect” can serve as a natural explanation for the lack of additivity. 
Rounding also provides a natural, local measure of information loss caused by the 
perturbation. 
Basically, the idea of the rounding concept suggested here is to publish a kind of 
confidence interval computed on basis of the perturbed data. Considering the noise 
variance given by (2.3.2), the size of the confidence interval will not be constant, but 
will be proportional to the largest contribution to a cell. The same must then hold for 
any rounding intervals covering the confidence intervals. Therefore, when dealing 
with strongly skewed data, i.e. data where the largest contributions to cells vary a lot, 
selecting individual rounding bases for each cell will be the only sensible option.  

3.1 Confidence intervals for post-tabular noise 
The confidence interval we use to determine a rounding basis is computed 
considering the following theoretical publication scenario: We assume the 
formulation of the post-tabular method of sec. 2.2 to be known to the users. Although 
publishing the exact parameters for the noise might be too risky, we further assume 
enough information to be made available so that users could imagine (upper) 
estimates for those parameters. Recalling definitions and denotations of 2.2 and  2.3 
the noisy value of a cell c can be written as Tpost = Torig - y1 + rc y1 = Torig + (rc -1) y1 where 
rc = (1 + dc uc ) with binary variable dc  denoting the deviation sense of the noise in cell 
c and noise uc  drawn from a truncated normal distribution with mean uμ and 
variance 2

uσ . Hence Torig = Tpost - dc uc y1 . We can thus compute the upper and lower 
bound for f.i. a 99% (i.e. 3-σ) confidence interval by UB(Torig) = Tpost + ( uμ  + 3 uσ ) y1 
and LB(Torig)= Tpost - ( uμ  + 3 uσ ) y1 5. Inserting the formulas for mean and standard 

                                                 
4 which normally would impose a huge problem, far from easy to define and usually impossible to 
solve with today’s computing capacities 
5 Note that UB(Tpost) = Torig + ( 0μ  + 3 0σ ) y1 and LB(Tpost)= Torig ( 0μ  + 3 0σ ) y1 5 hold as well, 
because the bounds for (rc -1) and (1- rc )  are the same (i.e. bounds for ± dc uc ). 
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deviation of a truncated normal distribution, these bounds become 
UB(Torig) = Tpost + (Is 0μ  + a 0σ  +  3 b½ 0σ ) y1 and LB(Torig) = Tpost - (Is 0μ  + a 0σ  +  3 b½ 0σ ) y1. 
As the user will often not know, if a cell is sensitive or not, we replace the binary 
variable Is by the probability pc for cell c to be sensitive, assuming the user might 
estimate this probability. Taking into account also that a user could only guess the 
true parameters 0μ  and 0σ , we assume a relative error of respective (upper) 
estimates, denoted by με  and σε  . The formulas then turn into 

(3.1.1) UB(Torig) = Tpost + (pc 0μ  ( 1 + με ) + (a +  3 b½) ( 1 + σε ) 0σ  ) y1 and 

 LB(Torig) = Tpost - (pc 0μ  ( 1 + με ) + (a +  3 b½) ( 1 + σε ) 0σ  ) y1 . 
For the empirical experiment of sec. 5 we simulate the user’s estimate for pc by 
min(1;p y1 /(T - y1 – y2). I.e. for sensitive cells we assume that the user always correctly 
guesses the cell to be sensitive. For non-sensitive cells the probability is non-zero 
and thus slightly inflates the confidence interval compared to the one that would be 
computed, if the non-sensitivity of the cell was actually known. 
As for the largest contribution y1  which will generally be unknown to a user, one 
might assume that users can guess an upper estimate with a relative deviation of at 
most q≥0. For the experiment of sec. 5, we use the worst case assumption q=0, i.e. y1 
to be known. 

3.2 From a confidence interval towards a rounding basis 
For a naïve user, the concept of a confidence interval might be confusing. A rounded 
value where the rounding interval covers the confidence interval might be easier to 
“sell”. Another important issue is that official statistics are supposed to report the 
“truth”. We should choose a rounding basis in such a way that the difference between 
a rounded original cell value and a rounded noisy value becomes very small. Even if 
users mistake the perturbed rounded data for rounded original data, not too much 
harm can come from it then. For the kind of magnitude data we consider here, 
restricting the choice of rounding basis to the powers of 10 (10, 100, 1000, etc) 
seems to be a natural option. 
We discuss now three alternative rules for finding a suitable rounding basis. Starting 
point of the idea is that when the rounded confidence interval bounds coincide, the 
true value must be within the corresponding rounding interval. This is the concept of 
the strictest of the three rules, R1, which rounds the noisy value to the smallest 
rounding basis where the rounded bounds of the confidence interval deviate only 
very slightly (e.g. by at most a maximum difference given by parameter dist. It is 
suggested to set dist to 1 in general and to 0 for sensitive cells). R2 and R3 are more 
relaxed. R2 decreases the rounding basis: it is enough, if the rounded true and 
rounded noisy value deviate by at most dist., given that the size of the confidence 
interval is less than 100 (after rounding). This means normally that the rounded 
bounds of the confidence interval coincide except for the last two digits on the right-
hand side. R3 is even more relaxed. Again the rounded true and rounded noisy value 
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must not deviate by more than dist., but now no condition is imposed on the bounds 
of the confidence interval. An illustrative example is: True value Torig = 156 764, noisy 
value Tpost = 156 755, confidence interval [155 463;158 047]; parameter dist. set to 1. 
Then for rounding base 100 (=102) the distance between the rounded bounds of the 
confidence interval is 1580-1555=25 and the distance between rounded true and 
rounded noisy value is 1568-1568=0. Hence, according to rule R2, 102 is the 
appropriate rounding base. 
Another – perhaps more theoretically appealing – approach might be the following:  
Replace in the confidence interval formula (3.1.1) the factor 3 by a variable uα 
expressing the α-quantile of the N(0,1) distribution. For a given rounding interval, 
compute the distances between its bounds and the true cell value. Let DR the smaller 
one. Releasing the rounded value means implicitly that the disseminator confirms 
that Torig - DR (or Torig + DR) is a lower (or upper) bound for the true value. Compute 
then the probability of a (symmetric) confidence interval with width of two times DR 
as follows: equate DR with the distance between bounds and midpoint of the 
confidence interval (3.1.1) and solve this equation for uα . For more detail see 
(Giessing, 2011). Looking up the value of the N(0,1)-distribution function at uα gives 
the probability for the 2 DR-width interval. The smaller the probability of this 
interval, the larger would be the risk connected to release of the rounded value. A 
sensible approach could be for the disseminator to fix a threshold (like f.i. 90, 95, 
97.5 or even 99) for a minimum acceptable probability. If the computed probability 
is below the threshold, the noisy value must be rounded to a larger basis. With the 
data of the above illustrative example, we obtain uα = 1.64 for basis B = 102. This 
quantile corresponds to a probabilitiy of 94.95 %. 
Regarding the presentation of the rounded data, it would be easy to publish them in 
scientific notation, like f.i. 1 567.X E+02, using the character ‘X’ as a warning that 
subsequent digits are not necessarily zero. One might imagine that many users would 
not be comfortable with this format. Filling digits chopped off through the rounding 
with ‘X’ in blocks of three, like 1 567 XXX , might be another option. Note that for 
sensitive cells the rounding basis will usually turn out to be larger than the cell value. 
So for sensitive cells, the ‘rounded’ value would typically look f.i. like this: 
X XXX XXX. 

4 Disclosure risks 
Ideally, the masked value should be at some safe distance from the true value for all 
sensitive cells. As pointed out in 2.2, for the post-tabular masking method, if 
parameters are chosen properly, this will always be the case. After restoring 
additivity this does not generally hold anymore, because some cells are adjusted into 
proximity of the original value. Also with the pre-tabular noise method of sec. 2.1 a 
number of masked cells will usually be sensitive according to a concentration rule 
because positive and negative deviations of the masked individual data tend to 
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compensate each other. In those cases however, users cannot to be sure that they 
actually managed to obtain a close estimate of a true value. 
A different type of risk arises, when intervals are released for all, or for some cells, 
like in the case of the rounding method of sec. 3.2. Considering the relations between 
e.g. inner and marginal cells, users could then try to compute close bounds of 
sensitive cells by differencing in a certain way between respective interval bounds. 
Theoretically, they could consider all table relations and the bounds of published 
intervals and compute - by solving some LP problems - feasibility intervals for 
sensitive cells (see Hundepool et al., 2009). In the process of fixing parameters and 
thresholds for the above rounding method, it is therefore important to evaluate the 
risk of the method by e.g. computing and analyzing those feasibility intervals for a 
number of test tables.  

5 Test results 
The methods presented above have been tested on tabular data of the German 
business tax statistics presenting turnover. Table 1 below presents results regarding 
the distribution of non-sensitive cells by relative deviation of noisy and true values for 
three of the test tables: each of them involves a NACE industry classification down 
to the most detailed (5-digit) level. The first two tables have a size-class dimension. 
All tables involve geography, either down to the state, the district or the municipality 
level. 
Obviously, the post-tabular noise proposed in sec. 2.2 (“Post”) preserves the quality 
of the data much better than the pre-tabular method of sec. 2.1. (“Pre”)6 . This 
confirms the theoretical results of section 2.3. We also see that this effect becomes 
the stronger the more detailed the tables are. Looking at cols. “Rd” we find that the 
additional information loss observed when the post-tabular noisy data is rounded 
(according to rule R2 of section 3.3) is not very much. Adjusting the noisy data to 
restore additivity using the CTA method mentioned in sec. 3 has a stronger effect, 
c.f. cols. “Adj”. Note that the additive solution considered here has been forced to be 
“consistent” with the rounding, e.g. in the additive solution the cell values of non-
sensitive cells are within the bounds of the respective rounding intervals. Comparing 
the relative deviations it becomes clear that the adjustment further increases the 
information loss, e.g. the midpoints of the rounding intervals tend to be closer to the 
true values than the adjusted values.  
Generally, the impression is that the methods perform better on the size class tables. 
This has probably to do with the fact that the contributions to a cell with a size-class 
grouping tend to be more homogeneous than to cells without size-class grouping. 

                                                 
6Note that the same parameters 0μ  and 2

0σ  have been used for both methods 
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NACE5 x State x SizeCl, 
124 204 non-sensitive cells 

NACE5 x Distr x SizeCl, 
38 256 non-sensitive cells7 

NACE5 x Municipality, 
4 811 non-sensitive cells7 

Range of 
rel. dev. 
(in %) Pre Post Rd Adj Pre Post Rd Adj Pre Post Rd Adj 

0-1 22.8 88.6 87.2 75.5 13.9 82.8 81.1 63.8 6.5 60.1 61.6 38.7 
1-2 14.8 8.9 8.2 12.0 12.1 13.4 11.6 16.7 6.5 26.0 20.2 21.2 
2-3 10.9 1.9 2.6 5.1 10.0 2.9 4.1 7.6 6.4 8.7 8.9 12.1 
3-4 8.5 0.4 1.0 2.7 8.7 0.7 1.6 4.2 5.5 3.4 4.8 6.8 
4-5 7.0 0.1 0.5 1.6 7.4 0.2 0.8 2.7 5.4 1.3 1.8 5.6 
5-6 5.7 0.1 0.2 1.0 6.8 0.1 0.4 1.6 4.8 0.2 1.2 3.3 
6-7 4.9 0.0 0.1 0.6 5.9 0.0 0.2 1.0 4.8 0.2 0.8 3.0 
7-8 4.1 0.0 0.1 0.4 5.2 0.0 0.1 0.7 5.4 0.1 0.5 1.9 
8-9 3.5 0.0 0.0 0.3 4.7 0.0 0.0 0.5 6.0 0.1 0.1 1.1 
9-10 3.1 0.0 0.0 0.2 4.2 0.0 0.0 0.4 5.2 0.0 0.2 1.4 
≥ 10 14.7 0.0 0.0 0.5 21.2 0.0 0.1 0.8 43.6 0.0 0.2 4.8 

Table 1 Distribution of non-sensitive cells by relative deviation of the noise 
 
Regarding disclosure risk that might arise from publishing the rounding intervals, 
feasibility intervals have been computed for the above three test tables. Indeed, for 
none of the 47 069, 32 317 and 4 811 sensitive cells in the three tables a feasibility 
interval was computed where one of the bounds would be too close to the true cell 
value. 
The second type of disclosure risk mentioned in sec. 4 arises when users find directly 
by looking at the noisy data, or indirectly (by taking means etc.) results that are too 
close to the true value. For the pre-tabular method we observed for example for the 
three test tables 15, 13 and 4 % of sensitive cells, where the noisy value is too close 
to the original value. This kind of direct disclosure cannot happen for the post-tabular 
method. What we found, however, is that when imposing that adjusted values must 
be within the rounding intervals, adjusted values will quite often be too close to the 
true values of sensitive cells. Especially for the two size class tables we found about 
40 % of sensitive cells that were adjusted into proximity of the original value. Of 
course users would not know which of the adjusted data would be a close estimate of 
a true value. 

6 Summary and final conclusions 
This paper has proposed a post-tabular method to protect skewed business magnitude 
data by multiplicative stochastic noise in combination with use of micro-data keys. 
The methodology has been proposed for automatic disclosure control in the context 
of modern facilities to generate user requested tables in a convenient and flexible 
way. 

                                                 
7 The state-level table relates to the whole country, the district-level table to one of the states and the 
municipality table to only one district. 
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In order to avoid user irritation because the noisy tables will not be additive and also 
to make the effect of the noise transparent on the level of the individual table cells, it 
has been proposed to round the perturbed data. A specific rounding rule determines 
for each cell an individual rounding basis that depends on the width of a confidence 
interval around the noisy value. 
The method has been proven theoretically and empirically to clearly outperform a 
corresponding multiplicative noise masking method for micro-data. A theoretical 
disclosure risk that could be imagined to arise when the rounding intervals cause 
feasibility intervals for the sensitive cells that are too close has not been confirmed in 
empirical tests. Hence, the method seems to protect the data properly. 
In principle one might imagine to enhance the method by a module to restore exact 
table additivity. On the other hand this will lead to inconsistency between released 
tables. It is therefore recommended to rather use rounded data for publication. 
Rounded data are consistent and additive (apart from rounding differences). On 
special request one might consider to release adjusted tables that add up exactly. Test 
result show that Controlled Tabular Adjustment can provide additive solutions that 
are coherent with the rounding intervals. 
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