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Abstract: Small area estimates provide a critical source of information used by a variety of 
stakeholders to study human conditions and behavior at the local level. Statistical agencies regularly 
collect data from small areas but are prevented from releasing detailed geographical identifiers in 
public-use data sets due to disclosure concerns. Alternative data dissemination methods used in 
practice include releasing summary/aggregate tables, suppressing detailed geographic information in 
public-use data sets, and accessing restricted data via Research Data Centers. This research considers 
a new method for disseminating public-use microdata that contains more geographical details than are 
currently being released. Specifically, the method replaces the observed survey values with imputed, 
or synthetic, values generated from a posterior predictive distribution. A hierarchical Bayesian model 
is used to preserve the small area inferences and simulate the synthetic data. Confidentiality protection 
is enhanced because no actual values are released. I demonstrate the method using data from a 
prominent federal statistical survey: the 2005-2009 American Community Survey. The analytic 
validity of the synthetic data is assessed by comparing the synthetic small area estimates to those 
obtained from the actual data.  

1 Introduction 
Demands for greater access to microdata for counties, municipalities, neighborhoods, 
and other small geographic areas is ever increasing (Tranmer et al., 2005). Analysts 
require such data to answer important research questions that affect policy decisions 
at local levels. Statistical agencies regularly collect data from small areas, but are 
prevented from releasing detailed geographic identifiers due to the risk of disclosing 
respondent identities and potentially sensitive information. 
     Existing data dissemination practices for small geographic areas include: 1) 
releasing summary tables containing aggregate-level data only; 2) suppressing 
geographical details in public-use microdata files for areas that do not meet a 
predefined population threshold (e.g., 100,000 persons) and; 3) permitting access to 
restricted geographical identifiers through a limited number of Research Data 
Centers (RDCs). Although useful in some situations, none of these methods is likely 
to satisfy the various needs of researchers, students, policy-makers, and community 
planners, who are fueling the demand for small area estimates. 
     This article investigates a fourth approach that statistical agencies may implement 
to release more detailed geographical information in public-use data sets. The 
approach builds on the statistical disclosure control method, originally proposed by 
Rubin (1993), in which multiple synthetic populations (conditional on the observed 
data) are generated and samples drawn from each synthetic population, which 
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comprise the public-use data files, are released. Valid inferences on a variety of 
estimands are obtained by analyzing each data file separately and combining the 
results using methods described in Raghunathan, Reiter, and Rubin (2003).  
     The synthetic data literature focuses on preserving statistics about the entire 
sample, but preserving small area statistics is not addressed. Statistics about small 
areas can be extremely valuable to data users, but detailed geographical identifiers 
are almost always suppressed in public-use microdata sets. Significant theoretical 
and practical research on model-based small area estimation has led to a greater 
understanding of how small area data can be summarized (and potentially simulated) 
by statistical models (Platek et al., 1987; Rao, 2003). The current study utilizes a 
Bayesian hierarchical model to “borrow strength” across related areas and to increase 
the efficiency of the resulting small-area estimates. The use of Bayesian hierarchical 
models for multilevel imputation, and, particularly, for synthetic data applications, is 
sparse (Yucel, 2008; Reiter, Raghunathan, and Kinney, 2006; Yu, 2008).  
     Under a fully-synthetic design all variables are synthesized and few (if any) 
observed data values are released. This design offers greater privacy and 
confidentiality protection compared to synthesizing only a subset of variables 
(Drechsler, Bender, and Raessler, 2008), but the analytic validity of inferences drawn 
from the synthetic data may be poor if important relationships are omitted or 
misspecified in the imputation model. A less extreme approach involves synthesizing 
a partial set of variables or records that are most vulnerable to disclosure (Little, 
1993; Kennickell, 1997; Liu and Little, 2002; Reiter, 2003). If implemented 
properly, this approach yields high analytic validity as inferences are less sensitive to 
the specification of the imputation model, but it may not provide the same level of 
disclosure protection relative to fully-synthetic data because the observed sample 
units and/or the majority of their data values are released to the public (Drechsler, 
Bender, and Raessler, 2008). 
      At the present time, statistical agencies have only released partially synthetic data 
files (Rodriguez, 2007; Abowd, Stinson, and Benedetto, 2006; Kinney and Reiter, 
2008). There are worthwhile reasons why fully-synthetic data may be more 
appropriate for small area applications. The most important reason is that complete 
synthesis offers stronger levels of disclosure protection than partial synthesis. Data 
disseminators are obligated by law to prevent data disclosures and may face serious 
penalties if they fail to do so. Hence, maintaining high levels of privacy protection 
should take precedence over maintaining high levels of analytic validity. This point 
is particularly important for small geographic areas, which may contain sparse 
subpopulations and higher proportions of unique cases that are especially susceptible 
to re-identification. A secondary benefit of creating fully-synthetic data sets is that an 
arbitrarily large sample size may be drawn from the synthetic population,  facilitating 
analysis for data users who would otherwise have to exclude or apply complicated 
indirect estimation procedures to areas with sparse (or nil) sample sizes. Synthetic 
sample sizes may be deliberately chosen to facilitate the use of direct estimation 
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methods and routine statistical procedures, easing the burden of analysis for data 
users. 
     In this article, I propose an extension to existing synthetic data procedures for the 
purpose of creating synthetic, public-use microdata sets for small geographic areas 
from which valid small area inferences may be obtained. A Bayesian hierarchical 
model is developed that accounts for the hierarchical structure of the geographical 
areas and “borrows strength” across related geographic areas. A sequential 
multivariate regression procedure is used to approximate the joint distribution of the 
observed data and to simulate synthetic values from the resulting posterior predictive 
distribution (Raghunathan et al., 2001). I demonstrate how statistical agencies may 
generate fully-synthetic data for small geographic areas on a subset of data from the 
U.S. American Community Survey. Synthetic data is generated for several 
commonly used household- and person-level variables and their analytic validity is 
evaluated by comparing small area inferences obtained from the synthetic data with 
those obtained from the observed data. I do not empirically evaluate the disclosure 
risk properties of the proposed synthetic data approach and leave this to future work. 

2 Review of Fully Synthetic Data 
The general framework for creating and analyzing fully synthetic data sets is 
described in (Raghunathan, Reiter, and Rubin, 2003) and (Reiter, 2004). Suppose a 
sample of size n is drawn from a finite population  of size N, with 

 representing the design or geographical variables available on 
all N units in the population, and  representing the survey 
variables of interest, observed only for the sampled units. Let  
be the observed portion of Y corresponding to sampled units and 

 be the unobserved portion of Y corresponding to 
the nonsampled units. The observed data set is . For simplicity, I assume 
there are no item missing data in the observed survey data set, but methods exist for 
handling this situation (Reiter, 2004). 
     Fully synthetic data sets are constructed based on the observed data D in two 
steps. First, multiple synthetic populations are generated by simulating 

 for the nonsampled units using independent draws from the 
Bayesian posterior predictive distribution, , i.e., conditional on the 
observed data D. Alternatively, one can generate synthetic values of Y for all N units 
based on the posterior predictive distribution of “future” or “super” populations 

, conditional on the observed data. This procedure ensures that the synthetic 
populations contain no real values of Y, thereby avoiding the release of any observed 
value of Y. Second, a random sample (e.g., simple random sample) of size  is 
drawn from each of M synthetic populations. These sampled units comprise the 
public-use data sets that are released to, and analyzed by, data users.  
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     From these publicly-released synthetic data sets, data users can make inferences 
about a scalar population quantity , such as the population mean of Y or 
the population regression coefficients of Y on X. In each synthetic data set, the user 
estimates Q with some point estimator q and an associated measure of uncertainty v. 
Let  be the values of q and v computed on the M synthetic 
data sets. I assume that these quantities are estimated based on a simple random 
sampling design. Under assumptions described in (Raghunathan, Reiter, and Rubin, 
2003), the data user can obtain valid inferences for scalar Q by combining the  
and  using the following quantities: 
 
 

 
 

 
(1) 

  
(2) 

   
 

 

 
(3) 

 
where  is used to estimate Q, and  
 
  (4) 
 
is used to approximate the variance of . A disadvantage of  is that it can be 
negative. Negative values generally can be avoided by making M and  large. A 
more precise variance estimator that is always positive is outlined in (Raghunathan, 
Reiter, and Rubin, 2003). Inferences for scalar Q are based on a normal distribution 
when , n, M, and  are large. For moderate M, inferences can be based on t-
distributions (Reiter, 2002). 

3 Creation of Synthetic Data Sets for Small Area Estimation 
I adopt a Bayesian approach, using a hierarchical imputation model, to generate 
synthetic data for small area estimation. Hierarchical models have been used in 
several applications of small area estimation (Fay and Herriot, 1979; Malec et al., 
1997); see Rao (2003) for a comprehensive review of design-based, empirical Bayes, 
and fully Bayesian approaches for small area estimation. Hierarchical models have 
also been used for imputation of missing data in multilevel data structures (Yucel, 
2008; Reiter, Raghunathan, and Kinney, 2006).  
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      My approach involves three stages. In the first stage, incremental regression 
models are fit using the observed data within each small area to approximate the joint 
conditional density of the set of variables to be synthesized. In the second stage, the 
joint sampling distribution of regression parameters is approximated and the 
between-area variation is modeled by incorporating state-level covariates. In the final 
stage, the regression parameters are simulated and are used to draw synthetic 
microdata values from the posterior predictive distribution. 
     In illustrating the modeling steps, I take a pragmatic approach by keeping the 
models relatively simple from a computational perspective. Despite the simplified 
presentation, the framework can handle more sophisticated modeling approaches. 
Limitations of the approach and alternatives are discussed in Section 5. 

3.1   Stage 1: Direct Estimates 

For descriptive purposes, I introduce the following notation. I define small areas as 
counties, nested within states, which could be nested within an even larger area (e.g., 
region). In specific terms, suppose that a sample of size n is drawn from a finite 
population of size N. Let  and  denote the respective sample and population 
sizes for county  within state . Let 

 represent the  matrix of survey 
variables collected from each survey respondent located in county c and state s. Let 

 represent the  matrix 
of auxiliary or administrative variables known for every population member in a 
particular county and state. Although I consider synthesis of the survey variables  
only, it is straightforward to synthesize the auxiliary variables  as well. 
     A desirable property of synthetic data is that the multivariate relationships 
between the observed variables are maintained in the synthetic data, i.e., the joint 
distribution of variables is preserved. The first task is to specify the joint conditional 
distribution of the observed county-level variables to be synthesized 

, where the synthetic values are drawn from a corresponding 
posterior predictive distribution. Specifying and simulating from the joint conditional 
distribution can be difficult for complex data structures involving large numbers of 
variables representing a variety of distributional forms. Alternatively, one can 
approximate the joint density as a product of conditional densities (Raghunathan et 
al., 2001). Drawing synthetic variables from the joint posterior density 

 can be achieved by sampling from , 
,…, . In practice, a sequence of generalized 

linear models are fit on the observed county-level data where the variable to be 
synthesized comprises the outcome variable and any auxiliary variables or previously 
fitted variables are used as predictors, e.g., . The 
choice of model (e.g., Gaussian, binomial) is dependent on the type of variable to be 
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synthesized (e.g., continuous, binary). It is assumed that any complex survey design 
features are incorporated into the generalized linear models and that each variable 
has been appropriately transformed, if needed, to satisfy modeling assumptions. 
After fitting each conditional density, estimates of the regression parameters   , the 
corresponding covariance matrix , and the residual variance  are obtained and 
incorporated into the hierarchical structure described below in Section 3.2. 

3.2   Stage 2: Sampling Distribution and Between-Area Model 

In the second stage of synthetic data creation, the joint sampling distribution of the 
design-based county-level regression estimates  (obtained from each conditional 
density in Stage 1) is approximated by a multivariate normal distribution, 
 

 
 

where  is a  matrix of unknown regression parameters and  is the 
 corresponding covariance matrix estimated from the first stage. The 

county-level regression parameters  are assumed to follow a multivariate normal 
distribution,  

 
 

where  is a  matrix of state-level covariates,  is a 
 matrix of population regression coefficients, and  is a  

covariance matrix. State-level covariates are incorporated into the hierarchical model 
in order to “borrow strength” from related areas. Prior distributions may be assigned 
to the unknown parameters  and , but for ease of presentation, I assume that  and 

 are fixed at their respective maximum likelihood estimates (MLE), a common 
assumption in hierarchical models for small area estimation (Fay and Herriot, 1979; 
Datta, Fay, and Ghosh, 1991; Rao, 1999).  

3.3   Stage 3: Synthetic Data Generation for Small Areas 

The ultimate objective is to generate synthetic populations within a small area using 
an appropriate posterior distribution. To this end, one can simulate the unknown 
regression parameters  specified in the hierarchical model described in Section 
3.2. Based on standard theory of the normal hierarchical model (Lindley and Smith, 
1972), the distribution of the population regression parameters is,  
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where  is a simulated vector of values for the vector of regression parameters  . 
Simulating a synthetic variable  for observed variable  from the posterior 
predictive distribution can then be achieved by drawing  from a parametric 
distribution with location and scale parameters  and  , respectively, where 

 may be drawn from an appropriate posterior predictive distribution ; 
alternatively, the maximum likelihood estimate  obtained from Section 3.1 may be 
used. For example, to simulate a normally distributed variable  one can draw  
from the distribution . Generating a second (normally distributed) 
synthetic variable  from the posterior predictive distribution  is 
achieved by drawing  from , where . If the second 
synthetic variable is binary, then  is drawn from , where 

 is the predicted probability computed from the inverse-logit of . For 
polytomous variables, the same procedure is adapted to obtain posterior probabilities 
for each categorical response and the synthetic values are sampled from a 
multinomial distribution. This iterative process continues until all synthetic variables 

 are generated. This procedure is repeated M times to create 
multiple replicates of synthetic variables . In 
addition, the entire process may be repeated several times to minimize ordering 
effects (Raghunathan et al., 2001). 
     The complete synthetic populations may be disseminated to data users, or a 
simple random sample of arbitrary size may be drawn from each population and 
released. Stratified random sampling may be used if different sampling fractions are 
to be applied within each small area. Inferences for a variety of small-area estimands 

 and large-area estimands  or  can be obtained using the combining rules in 
Section 2. 

4 Evaluation of Synthetic Data for Small Area Inferences 
 

In this section, I illustrate the above procedure on a subset of restricted microdata 
from the U.S. American Community Survey (ACS). I generate fully-synthetic data 
sets for relatively small geographic areas (i.e., counties) and evaluate the analytic 
validity of the resulting estimates. The data consist of seven household-level 
variables and seven person-level variables measured on 846,832 households and 
2,093,525 persons during years 2005-2009. The variables, shown in Table 1, were 
chosen by researchers at the U.S. Census Bureau for this project. We treat small 
areas as counties identified in the restricted ACS microdata. All such areas are non-
overlapping and are nested within a state. I restrict the sample to the Northeast 
region, which contains 9 states and 217 counties. 
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     I generate  fully-synthetic data sets for each county. To ensure that each 
synthetic data set contains ample numbers of households and/or persons within 
counties, I create synthetic samples that are larger than the observed samples in each 
county. Specifically, I generate synthetic sample sizes that are approximately 
equivalent to 20% of the total number of U.S. households located within each county 
based on the 2000 decennial census counts. This yielded a total synthetic sample size 
of 4,436,085 households for the Northeast region. Conceptually, this is equivalent to 
drawing a stratified random sample of households from each of  synthetic 
data populations. 
 
Table 1. List of ACS variables used in the synthetic data evaluation. 
Variable Range/Categories 
Household variables 
  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms (excl. bedrooms) 
  Tenure 
  Income 
Person variables 
  Sampling weight 
  Gender 
  Education 
 
  Ethnicity 
  Age 
  Race 
  Living in poverty 

 
1 - 20 
1 - 516 
0 - 5 
1 - 600 
1 - 7 
mortgage/loan, own free and clear, rent 
-33,998 – 2,158,100 
 
1 - 814 
male, female 
16 categories, recoded less than high school, 
high school, some college, and college 
graduate  
Hispanic, non-Hispanic 
0 - 95 
9 categories, recoded white, black, other 
yes, no 

 
     The first survey variable to be synthesized is household size. Creating a 
household size variable facilitates the generation of synthetic person-level variables 
in a later step. Because no administrative or other conditioning variables  are 
available for this application, household size is simulated using a Bayesian Poisson-
Gamma model conditional on the observed household size variable with unknown 
hyperparameters estimated using maximum likelihood estimation: specifically, the 
Newton-Raphson algorithm. The remaining household-level variables are 
synthesized using the hierarchical modeling procedure described in Section 3. The 
sample selection weights (both household and person) are included among the set of 
variables to be synthesized. State-level covariates , including population size (log-
transformed), number of metropolitan, and number of micropolitan areas, are 
incorporated into the hierarchical model.  
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     Normal linear models are fit within each county to obtain design-based estimates 
of regression parameters for all numerical variables (with the previously noted 
exception of household size). Synthetic values of numerical variables are sampled 
from a Gaussian posterior predictive distribution. For binary variables, logistic 
regression models are used to obtain design-based estimates of regression 
coefficients and corresponding synthetic values are sampled from a binomial 
posterior predictive distribution; the same procedure is applied to polytomous 
variables, which are broken up into a series of binary variables. To increase the 
stability of the design-based regression estimates, I apply a minimum sample size 
rule of  within each county. If a county did not meet this minimum threshold, 
then nearby counties were pooled together until the criterion was met. 
     Once the household variables were synthesized, the synthetic household data sets 
were converted to person-level data sets and the person-level variables were 
synthesized conditional on the household-level variables. Taylor series linearization 
(Binder, 1993) was used to obtain design-based regression estimates, accounting for 
the clustering of persons within households. To reduce the ordering effect of 
synthesizing the household variables first, I implemented 5 conditioning cycles 
where each synthetic variable was conditioned on the full set of household- and 
person-level variables from the previous implementations.  
     All analyses were conducted at the Michigan Census Research Data Center at the 
Institute for Social Research in Ann Arbor, Michigan. The Census Bureau’s 
Disclosure Review Board approved the output presented here. 

4.1   Univariate Inferences for Small Areas 

I evaluate the analytic validity of the synthetic data by comparing county estimates 
obtained from the synthetic data with those obtained from the observed data for all 
217 counties. First, I compute basic univariate estimates, namely, overall means (or 
proportions), subgroup means, standard deviations, and standard errors for each 
county; multivariate estimates are evaluated in Section 4.2.  
     Table 2 presents the overall mean of the county means and standard errors 
obtained from the synthetic and observed data. Scatter plots of synthetic and 
observed county means are shown in Appendices 1-2. The fifth column contains the 
regression intercept and slope of the observed point estimates regressed against the 
synthetic point estimates for all 217 counties. A slope equal to (or close to) 1 
indicates a strong linear correspondence between the synthetic and observed 
estimates. On average, most of the synthetic county means are generally within two 
standard errors of the observed county means and the estimated slopes are relatively 
close to the desired value of 1. One exception is the Age variable, which is 
overestimated by the synthetic data. The observed age variable has a bimodal 
distribution, which is not ideally simulated with a Gaussian distribution; this is a 
limitation of the Bayesian parametric framework. Nonparametric strategies may 
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improve the accuracy of the synthetic data. Some of the binary variables (e.g., black, 
hispanic, rent, poverty) are overestimated by the synthetic data due to pooling of 
neighboring areas. For example, the prevalence of blacks in many counties did not 
meet the minimum sample size criterion and had to be pooled with neighboring 
counties to obtain stable estimates of regression parameters. Other instances where 
the synthetic data overestimates small area statistics occur for percentile estimates. 
For the estimated percentage of households with incomes greater than the 50th 
percentile, the synthetic data estimate corresponds quite well to the actual estimate. 
However, as the percentiles increase, the accuracy of the synthetic data drops. 
Simulation results (not shown) yielded relatively high confidence interval coverage 
for the estimated synthetic means, producing coverage rates ranging from 0.86 to 
0.99). Aggregating the synthetic data to the state- and region-levels yielded estimates 
with similar correspondence to the observed aggregated data (not shown), indicating 
that this method may be useful for producing valid estimates across multiple levels of 
geography.  
 
 
Table 2. Mean of synthetic and observed county means/proportions and standard 
errors and regression slope of actual means on the synthetic means for all 217 
counties.  
 Avg. Mean Avg. Standard 

Deviation 
Avg. Standard 
Error of Mean 

Regression of Actual 
Means on Synthetic 

Means 

 Actual Synthetic Actual Synthetic Actual Synthetic Intercept Slope 

Household variables 
  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms 
  Income 
  Tenure (%) 
    Mortgage/loan 
    Own free & clear 
    Rent 
 
  Income > 50th pctile,% 
  Income > 75th pctile,% 
  Income > 90th pctile,% 
  Income (Mortgage=1) 
  Income (Own=1) 
  Income (Rent=1) 

 
2.12 
9.99 
2.88 

118.89 
3.23 

67983.9 
 

49.00 
31.12 
19.88 

 
44.65 
19.34 
6.78 

84667.0 
61076.6 
38844.5 

 
2.12 

10.20 
2.82 

119.37 
3.18 

67382.4 
 

47.03 
30.37 
22.60 

 
44.56 
21.49 
8.38 

86992.6 
60456.9 
36921.9 

 
1.46 
7.21 
0.96 
78.72 
1.19 

68481.3
 

49.38 
45.53 
38.86 

 
48.24 
37.34 
22.96 

69019.2
76053.1
37759.4

 
1.45 
7.04 
1.09 

78.33 
1.28 

54081.9 
 

49.30 
44.97 
41.00 

 
48.19 
38.69 
24.58 

58960.1 
45083.6 
32527.3 

 
0.02 
0.11 
0.02 
1.25 
0.02 

1067.3 
 

0.82 
0.77 
0.63 

 
0.80 
0.59 
0.35 

1536.0 
2132.8 
1436.0 

 
0.01 
0.11 
0.01 
1.10 
0.02 

692.6 
 

0.74 
0.72 
0.63 

 
0.56 
0.43 
0.24 

1195.3 
1232.7 
1166.5 

 
0.02 
0.01 
0.15 
9.90 
0.09 

4681.7 
 

0.04 
0.05 
-0.05 

 
0.01 
-0.00 
0.56 

5460.0 
1717.0 
3480.0 

 
0.99 
0.98 
0.97 
0.91 
0.99 
0.94 

 
0.95 
0.85 
1.09 

 
0.97 
0.91 
0.74 
0.91 
0.98 
0.99 

Person variables 
  Sampling weight 
  Gender (%) 
  Education (%) 
    < 12 years 
    12 years 
    13-15 years 
    16+ years 
  Hispanic (%) 
  Age 

 
10.27 
48.63 

 
31.48 
28.34 
20.33 
19.85 
3.85 

40.89 

 
10.67 
48.63 

 
31.67 
27.74 
20.25 
20.35 
4.23 

41.16 

 
7.59 
49.97 

 
46.31 
44.40 
40.11 
38.72 
15.72 
22.98 

 
8.02 

49.97 
 

46.31 
44.06 
40.04 
39.14 
16.99 
30.34 

 
0.08 
0.53 

 
0.49 
0.48 
0.43 
0.40 
0.14 
0.25 

 
0.14 
0.44 

 
0.39 
0.57 
0.50 
0.51 
0.26 
0.27 

 
-0.09 
0.04 

 
0.09 
0.01 
0.01 
-0.01 
-0.00 
22.02 

 
0.97 
0.91 

 
0.71 
0.97 
0.96 
1.00 
1.00 
0.46 
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  Race (%) 
    White 
    Black 
    Other 
  Poverty (%) 
 
  Poverty (White=1; %) 
  Poverty (Black=1; %) 
  Poverty (Other=1; %) 
  Poverty (Hispanic=1; %)

 
92.21 
3.55 
4.24 
8.65 

 
7.93 

20.48 
16.62 
19.92 

 
91.34 
4.01 
4.65 
9.04 

 
8.19 

21.30 
17.84 
21.11 

 
22.17 
14.54 
14.54 
27.54 

 
26.41 
36.86 
35.37 
37.08 

 
24.08 
16.26 
18.61 
28.13 

 
26.84 
37.03 
36.07 
37.96 

 
0.20 
0.13 
0.16 
0.30 

 
0.30 
4.62 
2.96 
3.52 

 
0.36 
0.26 
0.27 
0.53 

 
0.51 
3.52 
4.38 
5.54 

 
0.01 
-0.01 
-0.00 
-0.00 

 
-0.00 
-0.01 
0.01 
-0.01 

 
1.00 
1.00 
1.00 
1.00 

 
1.00 
1.01 
0.87 
0.98 

4.2   Multivariate Inferences for Small Areas 

Next I evaluate the analytic validity of the synthetic data for multivariate estimates. 
Table 3 presents overall summary results of two multiple regression models fitted 
within each county. The first model regresses household income (cube root) on the 
remaining household-level variables, and the second model regresses a binary 
variable indicating college graduation (college graduate vs. less than high 
school/high school graduate/some college) on all other person-level variables. The 
summary measures shown in Table 3 consist of overall means of the estimated 
regression coefficients and corresponding standard errors obtained from each county. 
Scatter plots of synthetic and observed regression coefficients are presented in 
Appendices 3-4. On average, the synthetic point estimates correspond relatively well 
with the observed point estimates. The synthetic point estimates lie within about two 
standard errors of the observed point estimates, on average. Many of the synthetic 
standard errors are similar in magnitude to the observed standard errors, on average; 
however, the loss of information in the synthetic data is apparent for the estimates 
that yield relatively larger synthetic standard errors (Hispanic, race). Simulation 
results (not shown) for the estimated regression coefficients yielded confidence 
interval coverage rates that ranged from 0.93 to 0.99. Relatively strong 
correspondence was found between the synthetic and observed coefficient estimates 
when the synthetic data were aggregated to higher levels of geography (e.g., states, 
region). 
 
Table 3. Mean of synthetic and observed county regression coefficients and standard 
errors and regression slope of actual coefficients on the synthetic coefficients for all 
217 counties. 
 Y=Household income 

(linear) 

Household-level 
covariates 

Actual 
Beta (SE) 

Synthetic 
Beta (SE) 

Intercept 
Household size 
Sampling weight 
Total bedrooms 

24.34 (1.11) 
1.52 (0.14) 
-0.04 (0.24) 
1.15 (0.19) 

24.26 (1.09) 
1.44 (0.14) 
-0.05 (0.26) 
1.23 (0.18) 
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Electricity bill/mo. 
Total rooms 
Tenure 
  Mortgage/loan 
  Own free & clear 
  Rent 

0.99 (0.18) 
1.25 (0.14) 

 
Ref 

-3.47 (0.37) 
-6.01 (0.44) 

1.04 (0.17) 
1.26 (0.13) 

 
Ref 

-3.05 (0.34) 
-6.84 (0.47) 

 Y=College graduate 
(logistic) 

Person-level 
covariates 

Actual 
Beta (SE) 

Synthetic 
Beta (SE) 

Intercept 
Sampling weight 
Gender: Male 
Hispanic 
Age 
Race 
  White 
  Black 
  Other 
Poverty 

-2.27 (0.12) 
0.03 (0.05) 
-0.06 (0.06) 
-0.70 (0.34) 
0.02 (0.001) 

 
Ref 

-1.06 (0.36) 
0.23 (0.24) 
-1.26 (0.17) 

-2.17 (0.13) 
0.03 (0.05) 
-0.06 (0.05) 
-0.66 (0.67) 
0.02 (0.05) 

 
Ref 

-0.65 (0.80) 
0.33 (0.36) 
-1.26 (0.28) 

5 Conclusions 
This study addresses an important data dissemination issue facing statistical 
agencies, which is how to meet the growing demand for high quality, public-use 
microdata for small geographic areas while protecting data confidentiality and 
respondent privacy. These competing aims are likely to receive even more attention 
in the future as research into small area effects and societal sensitivity towards 
privacy continues to grow.  
     This paper proposes a fully-synthetic data approach that utilizes a hierarchical 
model for creation of microdata for small geographic areas. The resulting data sets 
could conceivably be released to the public, along with additional data products that 
contain finer levels of detail than those currently being released. The methodology is 
flexible, easy to implement, and can be straightforwardly adapted to a variety of 
Federal statistical surveys and other data sources representing various geographical 
structures and variable types. This approach has been applied to other large Federal 
survey data sets, including the National Health Interview Survey and additional 
evaluations are underway. 
     Results of the empirical ACS evaluation suggest that valid small area inferences 
can be obtained from fully-synthetic data for basic descriptive and multivariate 
estimands. However, there is room for improvement as there was not always strong 
correspondence between the synthetic and actual estimates. More flexible modelling 
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approaches, such as those utilizing nonparametric imputation models, could be used 
to improve the quality of the synthetic data and the resulting small area estimates, 
particularly for variables that do not follow strict parametric distributions. 
     One issue that was not addressed in this paper is the level of disclosure protection 
offered by the synthetic data for small areas. Although there is evidence that fully-
synthetic data offers better protection against disclosure than partially-synthetic data 
(Drechsler, Bender, and Raessler, 2008), this may not be true for small geographic 
areas or sparse subpopulations. Further research is needed to determine whether 
fully-synthetic data offers adequate levels of disclosure protection to be suitable for 
public release in a small area context. 
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Appendix 1 Scatter plot of synthetic and observed county means for 
household-level variables 
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Appendix 2 Scatter plot of synthetic and observed county means for 
person-level variables 
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Appendix 3 Scatter plot of synthetic and observed county linear 
regression coefficients of household income (cube root) on 
household-level variables 
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Appendix 4 Scatter plot of synthetic and observed county logistic 
regression coefficients of college graduation on household-level 
variables 
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