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Abstract. Organizations and businesses, including financial institutions and healthcare

providers, are increasingly collecting and disseminating information about individuals in

the form of transactions. A transaction associates an individual with a set of items,

each representing a potentially confidential activity, such as the purchase of a stock or

the diagnosis of a disease. Thus, transaction data need to be shared in a way that pre-

serves individuals’ privacy, while remaining useful in intended tasks. While algorithms for

anonymizing transaction data have been developed, the issue of achieving a “desired” bal-

ance between disclosure risk and data utility has not been investigated. In this paper, we

assess the balance offered by popular algorithms using the R-U confidentiality map. Our

analysis and experiments shed light on how the joint impact on disclosure risk and data

utility can be traced, which allows the production of high-quality anonymization solutions.

1 Introduction

Transaction datasets about individuals are increasingly collected and shared by or-
ganizations and businesses to support a wide spectrum of applications, including
e-commerce [20] and biomedicine [11]. These datasets are comprised of records,
called transactions, which consist of sets of items, such as the products purchased
by customers from a supermarket, or the diagnosis codes contained in patients’
electronic medical records.

Publishing transaction data needs to be performed in a way that prevents re-
identification (i.e., the association between an individual and their transaction) to
adhere to data sharing policies and regulations [1, 2, 5]. Note that, re-identification
is possible even when no explicit identifiers are contained in the released data, as
shown in the AOL search data incident [3]. For instance, releasing Table 1(a) after
removing individuals’ names would still allow an attacker, who knows that Anne is
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diagnosed with a, b, and c, to associate her with the first transaction in the table
and infer all of her diagnoses.

Several methods that protect transaction data by limiting the probability of
re-identification have been proposed [7, 12, 18]. These methods anonymize data us-
ing item generalization (i.e., they replace items with more general/abstract ones)
and/or suppression (i.e., they eliminate some items from the data), until the afore-
mentioned probability becomes 1

k
or less, where k is a parameter that is specified

by the data publisher. Table 1(b), for example, is produced from Table 1(a) when
the method of [18] is applied with k = 6. Observe that all diagnosis codes are re-
placed by (a, b, c, d, e, f, g), which is a generalized item interpreted as representing
any non-empty subset of {a, b, c, d, e, f, g}, and that the probability of re-identifying
an individual, using Table 1(b), is no more than 1

6
.

Name Diagnosis codes
Anne a b c d e f
Greg a b e g
Jack a e
Tom b f g
Mary a b
Jim c f

(a)

Diagnosis codes
(a, b, c, d, e, f, g)
(a, b, c, d, e, f, g)
(a, b, c, d, e, f, g)
(a, b, c, d, e, f, g)
(a, b, c, d, e, f, g)
(a, b, c, d, e, f, g)

(b)

Figure 1: (a) Original dataset, and (b) output of Apriori

Unfortunately, maximizing both the privacy protection and utility of anonymized
data is computationally infeasible [12], and these two properties can only be traded-
off. While producing data with a “desired” trade-off is essential in practice, how this
may be achieved is still not addressed. In this paper, we evaluate the privacy/utility
trade-off offered by three popular transaction data anonymization algorithms [7,
12, 18], when they are applied to e-commerce [20] and electronic medical record
datasets from the Vanderbilt University Medical Center [13]. We examine how an
R-U confidentiality map [8] can be constructed for anonymized transaction data.
We also show how an R-U confidentiality map can be used to assist data publishers
in balancing protection from re-identification with data utility and in comparing
different anonymization methods.

The remainder of the paper is organized as follows. Section 2 provides the nec-
essary background and Section 3 discusses the concept of R-U confidentiality map
and its use in transaction data publishing. In Section 4, we provide experimental
results and, in Section 5, we conclude the paper.

2 Background

In this section, we review the techniques of generalization and suppression for
anonymizing transaction data. We also discuss popular anonymization principles
and algorithms to guard against re-identification, as well as a measure to capture
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data utility based on aggregate query answering accuracy.

2.1 Notation

Let I = {i1, ..., iM} be a finite set of literals, called items. Any subset I ⊆ I is called
an itemset over I, and is represented as the concatenation of the items it contains.
An itemset that has m items, or equivalently a size of m, is called an m-itemset and
its size is denoted with |I|. A dataset D = {T1, ..., TN} is a set of N transactions.
Each transaction Tn, n = 1, ..., N , corresponds to a unique individual and is a pair
Tn = 〈tid , I〉, where tid is a unique identifier and I is the itemset. A transaction
Tn = 〈tid , J〉 supports an itemset I, if I ⊆ J . Given an itemset I in D, we use
sup(I,D) to represent the number of transactions Tn ∈ D that support I.

2.2 Generalization and suppression

Producing data that prevents re-identification can be achieved by generalization
and suppression, which, contrary to perturbative methods [15], allow data semantics
to be preserved (i.e., an individual will not be associated with false information).
Applying suppression results in publishing an anonymized version D̃ of D from
which one or more items contained in D have been removed. On the other hand,
generalization transforms an original dataset D to an anonymized dataset D̃ by
mapping items in D to generalized items [12]. Thus, generalization often incurs less
information loss than suppression [11].

Suppression and generalization can be applied globally, when each occurrence
of an item i in D is suppressed or replaced by the same generalized item ĩ in D̃,
respectively, or locally, when this restriction is lifted. Global generalization can be
considered as a mapping function Φ from I to the space of generalized items Ĩ,
which is constructed by assigning each item i ∈ I to a unique generalized item
Φ(i) = ĩ in Ĩ that contains i.

2.3 Anonymization principles and algorithms

To see how generalization can be used to prevent re-identification, observe that, given
an anonymized dataset D̃, an attacker, who knows that an individual is associated
with an item i ∈ D, can link this individual to their transaction with a probability of
at most 1

sup(Φ(i),D̃)
. It is also easy to see that sup(i,D) ≤ sup(Φ(i), D̃), because Φ(i)

in D̃ is supported by all transactions that support i in D, as well as by transactions
that support any other item in D that is mapped to Φ(i) in D̃.

For example, b is supported by 4 transactions in the original data of Table 1(a)
and by 6 transactions in the anonymized version of this table, shown in Table 1(b).
Thus, generalizing i can lead to reducing the probability of re-identifying an indi-
vidual. On the other hand, a globally suppressed item is not supported by any
transactions in D̃, hence the probability of re-identifying an individual based on this
item is zero.
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Suppression and generalization, however, need to be used in a principled manner,
as otherwise it is possible for either unprotected or practically useless data to be
produced [10]. Since privacy principles originally developed for relational data, such
as k-anonymity [16], have shown to cause excessive information loss when applied
to protect transaction data, alternative privacy principles have been developed. For
example, Terrovitis et al. [18] argued that it may be difficult for an attacker to
acquire knowledge about all items of a transaction and proposed the km-anonymity
principle, which is defined as follows.

Definition 2.1 (km-anonymity). Given parameters k and m, a dataset D satisfies
km-anonymity when sup(I,D) ≥ k, for each m-itemset I in D.

A km-anonymous dataset provides protection from attackers who know up to
m items of an individual, because it ensures that any combination of these items
cannot be used to associate this individual with less than k transactions of the re-
leased dataset. To enforce km-anonymity, Terrovitis et al. [18] designed the Apriori
Anonymization, henceforth referred to as Apriori. Apriori operates in a bottom-up
fashion, beginning with 1-itemsets (items) and subsequently considering incremen-
tally larger itemsets. In each iteration, the algorithm enforces km-anonymity using
the full-subtree, global generalization model [9].

Motivated by applications, including biomedical data sharing, in which the po-
tentially linkable itemsets are known, Loukides et al. [12] proposed the concept of
privacy constraint, which is defined as a set of potentially linkable items from I.
Satisfying a privacy constraint imposes a lower bound of k to the support of item-
sets that need to be protected, and thus limits the probability of re-identification
based on the items contained in the constraint, as explained below.

Definition 2.2 (Privacy constraint). A privacy constraint p = {i1, ..., ir} is a set of
potentially linkable items in I. Given a parameter k of anonymity, p is satisfied in
D̃ when either sup(p, D̃) ≥ k or sup(p, D̃) = 0.

The authors of [12] also proposed limiting the amount of allowable generalization
for each item by introducing the concept of utility constraint. A utility constraint is
a set of items that are allowed to be generalized together, and it models an analysis
requirement. A set of utility constraints is specified by data publishers and given
as input to an anonymization algorithm. When the generalized dataset produced
by the algorithm satisfies the specified utility constraints (i.e., no item in a utility
constraint is generalized together with an item not contained in the constraint),
it is guaranteed that the generalized dataset remains useful for analysis. An al-
gorithm that can anonymize data, based on privacy and utility constraints, called
COnstrained-based Anonymization of Transactions (COAT), was introduced in [12].
This algorithm operates in a greedy fashion and employs global generalization and
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suppression. The choice of the items generalized by COAT is governed by utility con-
straints. Specifically, given a set of utility constraints, COAT attempts to construct
a generalized item that is not more general than its corresponding utility constraint.
When such an item is not found, COAT selectively suppresses a minimum number
of items from the corresponding utility constraint to ensure privacy.

Another approach to prevent re-identification when adversarial knowledge is ex-
pressed as a set of privacy constraints was recently proposed by Gkoulalas et al. [7].
This approach models transaction data anonymization as a constrained clustering
problem, where the objective is to construct a clustering comprised of generalized
items, such that it satisfies privacy constraints and incurs minimal information loss.
This problem is shown to be NP-hard and is dealt by with a heuristic algorithm,
called Privacy-constrained Clustering-based Transaction Anonymization (PCTA).
PCTA iteratively selects the privacy constraint p that is most likely to require a
small amount of generalization in order to be satisfied. Then, it examines all pos-
sible ways to generalize items in p and applies the one that leads to the minimum
amount of information loss. The process continues until the privacy constraint is
satisfied, at which point the next non-satisfied privacy constraint is examined.

2.4 Capturing utility using ARE

A transaction dataset can be anonymized in many different ways, but the one that
harms data utility the least, is typically preferred. To capture data utility, criteria
that measure the information loss incurred by anonymization have been proposed
[12, 18]. Examples of such criteria are the Normalized Certainty Penalty (NCP),
which is used as an objective measure in the Apriori algorithm, and the Utility Loss
(UL), which guides the anonymization performed by COAT and PCTA.

SELECT COUNT(Tn) FROM D
WHERE I supports Tn in D

(a)

SELECT COUNT(T̃n) FROM D̃
WHERE Ĩ supports T̃n in D̃

(b)

Figure 2: COUNT query applied to (a) original, and (b) anonymized data.

Another way to quantify data utility is to assume that anonymized data are
intended for a specific task and measure how accurately they support this task com-
pared to the original data. Average Relative Error (ARE ) is a criterion that captures
data utility, based on the accuracy of performing query answering on anonymized
data. Given a workload of queries, ARE reflects the average number of transactions
that are retrieved incorrectly as part of query answers [12]. Consider, for example,
the COUNT query illustrated in Fig. 2(a). Assuming that I = {a} and D is the
dataset of Fig. 1(a), we can derive an answer of 4 for this query. However, we
cannot do the same when this query is applied to the anonymized dataset shown
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in Fig. 1(b), and an estimated answer needs to be derived. Based on the method
of [11], for example, the estimated answer for this query is 3, and the Relative Error

is |4−3|
4

= 0.25. Given a number of such queries, ARE is computed by averaging
their Relative Error scores.

3 R-U Confidentiality map

As maximizing both privacy protection and utility offered by anonymized data is
computationally infeasible, the goal of data publishers becomes to produce anonymized
data with a “desired” trade-off between these two properties. This calls for a study
of the relationship between disclosure risk and data utility, which can be conducted
empirically, based on the concept of R-U confidentiality map [8]. The R-U confi-
dentiality map was originally proposed for additive noise [8], but has been applied
to different privacy-preserving techniques, including topcoding [6], as well as k-
anonymization and randomization [17]. Using an R-U confidentiality map, data
publishers are able to select an anonymization with a “good” balance between data
utility and privacy, which is beneficial when they do not have specific requirements
for privacy protection and data utility. In addition, R-U confidentiality maps enable
a comparison of the effectiveness of different anonymization algorithms, which is not
trivial when the algorithms are based on different privacy principles (e.g., Apriori
and COAT) or optimization strategies (e.g., COAT and PCTA).

In our context, an R-U is a curve that illustrates the effectiveness of an anonymiza-
tion method in terms of the level of privacy protection from re-identification (hence-
forth referred to as Risk) and data utility for aggregate query answering (henceforth
referred to as Utility). To construct an R-U confidentiality map, we map a set of
anonymization solutions, which are produced by applying the same method using
different parameters, to a set of two-dimensional points. The x and y coordinates of
each point correspond to the level of Utility and Risk offered by the anonymization
solution, respectively. An example of an R-U confidentiality map constructed based
on solutions derived by COAT can be seen in Fig. 3(a).

Utility for an anonymized dataset D̃ and a workload of queriesW is measured as
1

ARE
, and Risk as the upper bound for the probability of performing re-identification

using D̃, which is computed as 1/min∀p∈Psup(p, D̃), where P is the set of the spec-
ified privacy constraints. To demonstrate the feasibility of using an R-U map, we
opted for simple measures, assuming that ARE and sup(

⋃
∀i∈p Φ(i), D̃) are non-zero.

However, we acknowledge the fact that data publishers may want to consider other
measures, such as NCP for Utility and top q-percentiles of Risk [17].

4 Experimental results

To allow a direct comparison between the tested algorithms, we configured all of
them as in [7] and transformed the resultant anonymized datasets by replacing each
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generalized item with the set of items it contains. In our experiments, no items were
suppressed. We used a C++ implementation of Apriori provided by the authors of
[18] and implemented COAT and PCTA also in C++. All methods were executed on
an Intel 2.0GHz machine with 4GB of RAM and tested using a common framework
to measure data utility.

In our experiments, we used the BMS-WebView-2 dataset (referred to as BMS2 ),
which contains click-stream data from an e-commerce site and has been used in
[11,18]. In addition, we used 2 real datasets that contain de-identified patient records
derived from the Electronic Medical Record (EMR) system of Vanderbilt University
Medical Center [13]. These datasets are referred to as VNEC and VNECKC and
were introduced in [11]. The datasets we used have different characteristics, shown
in Table 1. To measure Utility, we used the query workloads of [7].

Dataset N |I| Max. size of T Avg. size of T

BMS2 77512 3340 161 5.0
VNEC 2762 5830 25 3.1

VNECKC 1335 305 3.1 5.0

Table 1: Description of used datasets

First, we applied COAT to the VNEC and VNECKC datasets using different k
values ranging from 2 to 80 and setting all other parameters as in the single-visit case
described in [12]. This configuration yielded Risk values that vary from 1 (when data
are published intact) to 0.0125. The R-U maps for VNEC and VNEC are shown
in Figs. 3(a) and (b), respectively. Observe that, in these two graphs, both the
Utility scores for the same Risk level and the shape of the curves are different. This
makes finding a “desired” trade-off between utility and privacy difficult and justifies
the need for using an R-U confidentiality map. Using the latter, data publishers,
who do not have specific requirements for data privacy and utility, can release the
anonymization corresponding to the Knee point on the graph, i.e., the point where
there exists the most significant local change in the curve. Given the coordinates of
the points of the R-U map, locating the knee point can be performed using various
methods [14, 19], such as the angle-based method [19]. The latter method resulted
in finding the Knee points shown in Figs. 3(a) and (b) below.

Then, we applied Apriori, COAT, and PCTA on BMS2 using different k values
ranging from 2 to 100. The R-U maps for these algorithms are illustrated in Figs.
4(a), (b), and (c). In this experiment, all algorithms were configured to achieve
k2-anonymity and COAT ran with a single utility constraint, effectively allowing
any possible item generalization. Observe that the shape of the curves for the three
algorithms differs significantly and that the construction of R-U confidentiality map
allows data publishers to find Knee points, i.e., to release anonymizations with a
“good” utility/privacy trade-off using either of these algorithms.

Finally, we considered a scenario in which data publishers have a certain maxi-
mum acceptable level of Risk and want to release the anonymized version of their
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(a) (b)

Figure 3: R-U maps for (a)VNEC and (b)VNEC kc.

(a) (b)

(c)

Figure 4: R-U maps for (a)Apriori, (b)COAT, and (c) PCTA (BMS2).
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dataset that offers the maximum Utility for this level of Risk. This scenario is
common, for example, in biomedical data sharing, where the typical maximum ac-
ceptable level of Risk is 0.2 [4, 12]. Assuming that data publishers can use one of
the Apriori, COAT, and PCTA agorithms, the R-U confidentiality map, shown in
Fig. 5, can help them identify PCTA as the algorithm to use, since it offers better
Utility than both Apriori and COAT, across all tested levels of Risk.

Figure 5: Comparison of anonymization algorithms using R-U maps for BMS2.

5 Conclusions
Several transaction data anonymization methods were developed recently, but how
they can be used to derive anonymizations with a “desired” utility/privacy trade-
off has not been considered. In this paper, we address this issue by applying the
concept of R-U confidentiality map. We explain how R-U maps can be constructed
and used in transaction data anonymization and, through experiments using real
data, we demonstrate the feasibility of our methodology.
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