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Abstract. Fully synthetic datasets, i.e. datasets that only contain simulated values,
arguably provide a very high level of data protection. Since all values are simulated re-
identification is almost impossible. This makes the approach especially attractive for the
release of very sensitive data such as medical records. However, the established variance
estimate for fully synthetic datasets has two major drawbacks. First, it can be positively
biased, where the bias is a function of the sampling rate of the original data. Second, it
can become negative.

In this paper I illustrate the negative effects of these drawbacks on the estimation of
the variance and propose an alternative variance estimate that shows less variability, is
always unbiased, and can never be negative. This variance estimate is closely related to
the variance estimate for partially synthetic datasets.

1 Introduction

In our data driven world with increasing amounts of information collected on all of us
through surveys, electronic health records, internet search logs, etc. adequate pro-
tection of privacy is a major concern. On the other hand there are obvious benefits
from broad access to the collected data since political and economic decisions can be
based on sound information. To balance these two competing objectives, a number
of approaches have been suggested in the literature on statistical disclosure control
to enable data dissemination without violating confidentiality restrictions (Willen-
borg and de Waal, 2001). While the first methods developed in the 1980s, such as
data swapping (Dalenius and Reiss, 1982) and adding noise (see Brand (2002) for a
review), mainly focused on disclosure protection and preserved only some univariate
statistics such as the population mean and the variance of a single variable, more
sophisticated methods such as post-randomization (Gouweleeuw et al., 1998) or data
shuffling (Muralidhar and Sarathy, 2006) have emerged in recent years. This meth-
ods explicitly try to optimize the trade-off between analytical validity and disclosure
risk for the released datasets. A more radical approach was suggested by Rubin in
1993: generating multiply imputed synthetic datasets. With this approach the orig-
inal records in the dataset are replaced by multiple synthetic versions, generated by



repeatedly drawing from a model fit to the original data. Specifically, Rubin sug-
gested to treat the survey variables for those units from the sampling frame that did
not participate in the survey as missing data and multiply impute them according
to the multiple imputation framework (Rubin, 1978). Simple random samples from
these fully imputed populations are then released to the public. Datasets gener-
ated based on this approach are now called fully synthetic datasets in the literature
to distinguish the approach from the partially synthetic approach (Little, 1993) for
which only sensitive variables and /or variables that bear a high risk of disclosure are
replaced with synthetic values (see Drechsler (2011) for a full review of the different
approaches to generating synthetic datasets). Since no actual values are released
if the fully synthetic approach is applied and the data are generated for units that
never actually participated in the survey this approach offers a very high level of data
protection and thus is especially attractive for very sensitive data such as medical
data. Despite these attractive features, applications of the approach in practice are
still limited. Drechsler et al. (2008b) apply the approach to a German establishment
survey and compare the results obtained from this dataset with results obtainable
from partially synthetic datasets (Drechsler et al., 2008a). Reiter (2005a) provides
a simulation study that illustrates the advantages but also potential limitations of
the approach. Abowd and Vilhuber (2008) suggest how to generate datasets that
fulfill e-differential privacy (Dwork, 2006) based on the fully synthetic approach.
The synthetic version of the Longitudinal-Business-Database (LBD) (Kinney et al.,
2011) can also be considered a fully synthetic dataset since all variables are replaced
with synthetic versions. However there is only one synthetic replicate available at
the moment and since the LBD is a census, there is no additional protection from
generating synthetic values for units that were not included in the original data.
Other applications of the fully synthetic approach can be found in Graham et al.
(2009); Sakshaug and Raghunathan (2010), and Yu (2008).

Raghunathan et al. (2003) developed procedures for obtaining valid inferences
from the multiple synthetic datasets. These procedures that are based on combin-
ing the point and variance estimates from each synthetic dataset are closely related
but differ slightly from the combining rules for multiple imputation for nonresponse
(Rubin, 1987). The combining procedures derived in the paper are based on the
assumption that the synthetic populations are generated by multiply imputing all
the values for those units that did not participate in the survey as proposed by
Rubin (1993). Thus, the synthetic populations consist of a combination of a large
fraction of imputed values and a small fraction of the originally observed records for
the survey respondents. This means that there is a small chance that the released
samples from these populations still contain some original records. To avoid this,
the authors suggest that “the whole population can be generated based on the pos-
terior predictive distribution of “super” or “future” populations” (Raghunathan et
al., 2003, p. 4). Since arguably the main advantage of fully synthetic datasets is



based on the notion that all records in the released files are synthetic, all extensions
of the original method (Reiter and Drechsler, 2010; Reiter, 2005b; Drechsler and Re-
iter, 2010) refer to this idea and all the applications of the fully synthetic approach
generate datasets that only contain synthetic values. However, the derivations pre-
sented in Raghunathan et al. (2003) are strictly valid only under the original idea for
generating synthetic datasets. If all values in the synthetic data are synthesized, the
derivations are only correct under the assumption that the underlying population is
infinite since the probability that any original value will be included in the released
sample from the synthetic population will tend to zero in this case. In all other cases
the variance estimate for the fully synthetic data will be positively biased, where
the bias is a function of the sampling rate of the original data.

Another important disadvantage of the variance estimate presented in Raghu-
nathan et al. (2003) is that it can be negative. Reiter (2002) proposes an alternative
variance estimate that is always positive. However, this variance estimate is conser-
vative and thus adds to the positive bias already present in the original estimate.

In this paper, I present an alternative variance estimate that closely resembles
the variance estimate for partially synthetic datasets with the main difference that
it adjusts for potentially different sample sizes between the original sample and the
synthetic sample. The estimate is always unbiased regardless whether all records
are synthesized or whether the originally proposed approach is used. Additionally
it shows less variability and can never be negative. The remainder of the paper
is organized as follows. In Section 2 I review the inferential methods that were
suggested in Raghunathan et al. (2003) to obtain inferences from fully synthetic
datasets. In Section 3 I derive an alternative variance estimate that overcomes
the drawbacks of the originally proposed estimate. Section 4 contains a simulation
study that illustrates the drawbacks of the original estimate and the validity of
the proposed estimate under various settings. The paper concludes with some final
remarks.

2 Traditional procedures for inference from fully synthetic
datasets

In their paper, Raghunathan et al. (2003) derive the inferential procedures to obtain
valid inferences from fully synthetic datasets generated using the design proposed
by Rubin (1993). To understand the procedure of analyzing fully synthetic datasets
generated under this design, think of an analyst interested in an unknown scalar
parameter (), where () could be, for example, the mean of a variable, the correlation
coefficient between two variables, or a regression coefficient in a linear regression.
Inferences for this parameter derived from the original datasets usually are based on
a point estimate ¢, an estimate for the variance of ¢, u, and a normal or Student’s
t reference distribution. For analysis of the imputed datasets, let ¢ and u for



¢ =1,...,m be the point and variance estimates for each of the m synthetic datasets.
The derivations in Raghunathan et al. (2003) implicitly assume that u(? contains a
finite population correction factor (fpc) if necessary. Since the fpc will be important
for the alternative variance estimate proposed in this paper, I will assume that «(?)
doesn’t contain the fpc and explicitly include it in the formulae where necessary.
The following quantities are needed for inferences for scalar Q:

=1

b = Y 4V = @n)*/(m—1), (2)

i=1

Uy = Zu(i)/m. (3)

The analyst then can use g, to estimate () and
Ty = (1+m b, — S, (4)

to estimate the variance of g, where 6 = (1—nyy,, /) is the finite population correc-
tion factor and ny, is the number of records in the released datasets sampled from
the synthetic populations. When n is large, inferences for scalar () can be based on
¢ distributions with degrees of freedom vy = (m — 1)(1 — 0, /((1 + m™1)by,))?%. As
discussed previously, a disadvantage of this variance estimate is that it can become
negative. For that reason, Reiter (2002) suggests a slightly modified variance esti-
mator that is always positive, TF = max(0,Ty) + (254, ), where v = 11 Ty < 0

Norg

and v = 0 otherwise. Here, n,,, is the number of records in the original sample.

3 Alternative procedures for inference from fully synthetic
datasets

In this section I suggest an alternative variance estimate for fully synthetic datasets
that closely resembles the variance estimate for partially synthetic datasets, T, =
Oy, + by, /m, where 0yrg = (1 —nyrg/N). The point estimate g, is valid irrespective
whether all records in the population or only the “missing” records in the population
are imputed. The improved variance estimate is given by:

Talt - 60T9Mam + bm/m (5)

org

When ngy, is large, inferences for scalar () can be based on ¢ distributions with
degrees of freedom vy, = (m — 1)(1 + MBorgNsyntim/ (Morghm))?.



To motivate this alternative variance estimate, we first note that the variance
estimate for partially synthetic datasets 7}, remains the same irrespective of the
fraction of records that are synthesized in the dataset. Thus, in the extreme case we
can synthesize all records in the original data and still obtain valid results as long
as the sample size remains constant, i.e. ngy, = N,g. We also note that 7Tp;; boils
down to T}, for ngy, = Nerg.

Changing the sample size compared to the original sample size might be beneficial
for two reasons: Records that are outliers in the original sample might also show
up as outliers in the synthetic sample and an intruder is tempted to assume that he
or she identified a specific record if there is a single outlier that shows comparable
features to the outlier in the original data. If the sample size increases, it is more
likely that records with similar features show up in the synthetic data. Generating
large samples can also be advantageous for variables with very skewed distributions
for example binary variables for which almost all of the outcomes are either 1 or 0.
If only a small number of synthetic datasets is generated and the sample size is small
it can happen that non of the rare outcomes will show up in any of the synthetic
datasets. This can be avoided by increasing the sample size.

To understand the adjustment of 7, if the sample size of the released data differs
from the sample size of the original data, we need to review the derivations for
partially synthetic datasets. Generally, the analyst of the synthetic data will be
interested in f(Q|dsyn), where dgy, is the set of m released synthetic datasets and @
is the parameter of interest. From Reiter (2003) we know that we can decompose
this expression as

where d,,, is the original sample and B = Var(g;|doy, B). We assume that large
sample approximations hold so that

f(Q|d0'rg) ~ N(Qm’ga 5orguorg)7 (7)

where gorg and u,.4 are the point estimate and its estimated variance that the an-
alyst would have used, if the original data would have been available. Since we
use large sample approximations it is sufficient to determine f(qorg, Uorg|dsyn, B) for
f(dorgldsyn, B). As is standard in the multiple imputation context, we assume that
imputations are made so that

f(qi|d07‘97 B) ~ N(Qorw B) (8>
(ul‘D7 B) ~ (Muorgp < B) (9)
syn

Note that the factor ny.4/ngy, is an extension compared to the derivations presented
in Reiter (2003) that accounts for the potentially different sample sizes of the original



and the synthetic dataset. This extension should be valid for all v/N consistent
estimators, such as the mean or (approximately) the regression coefficient in a linear
regression under simple random sampling. Since we assume negligible variance for
u;, we have u; = Uy, & ~2Lu,,,. Assuming uninformative priors for ¢u., and e,
implies that

Nsyn

(QOTg|dsyna B) ~ N(ém) B/m) (10)
(torg|dsyn; B) ~ <”y”um < B/m) (11)
Norg

From this, we can derive the posterior mean and variance of (Q|ds,,, B) as

E(Q|dsyn, B) = E(E(Q|dorg)|dsyn: B) = Gm (12)
VGT(QMSW’B) = E(VGT(Q|dorg)|dsymB)+VGT(E(Q|dor9)|dsymB)
= Gorg Gy, + B/m (13)
org

To obtain f(Q|dsy,) we would need to integrate f(Q|dsyn, B) over f(B|ds,,). Instead
we use the approximations presented in Rubin (1987, pp. 90-92) to obtain

(Q|d8yﬂ) ~ tualt (Qma Talt) (14)

The degrees of freedom v, are obtained by matching the first two moments of
Oorg =Ty, 4+ B/m to a mean-square random variable.
org

4 Simulation studies

To evaluate the validity of the alternative variance estimate and to illustrate the
drawbacks of the original variance estimate I use a repeated simulation design. For
the simulation I generate a population of N = 10,000 records consisting of one
standard normal variable Y. I repeatedly draw simple random samples of different
sample size (1%, 5%, 10%, and 20%) from this population and consider this fraction
of the data as the original survey data. Assuming uninformative priors, synthetic
versions of these survey data can be generated in three steps.

2

1. Draw 0% ~ (n — 1)62x,,2,.

2. Draw p ~ N(ij,02%/n).

3. Draw ysyn ~ N(u,0?),
where 62 is the variance of Y estimated from the survey sample. To illustrate the
difference between the originally proposed approach and the way fully synthetic

datasets are generated in practice, I generate two different versions of synthetic
data. In the first version, I generate a synthetic population by appending the n



records form the original sample with N — n,,, imputed values for the originally
“missing” values of the population. In the next step I draw ngy, = 21,4 records
from this synthetic population, i.e. the sample size of the synthetic datasets is
always twice the sample size of the original sample. These are the records that
should be released to the public. I call this the Raghunathan-Reiter-Rubin (RRR)
approach. In the second version, I draw ng,, directly as outlined above. Since this
is the approach that would normally be applied in practice, I call this the practical
approach. Using both approaches I generate m = 5,20, 100 synthetic datasets from
each original sample. I assume the analyst is interested in estimating the mean of Y
from the synthetic data. I compute the estimated variance for the synthetic sample
mean based on the original variance estimate 7 and on the alternative variance
estimate T},;; under both synthesis designs. For the simulation study I repeat the
whole process of sampling from the population, generating synthetic datasets, and
analyzing the synthetic datasets 5,000 times. Results for different m and different
sample sizes are presented in Figure 1 and Tables 1 and 2. Figure 1 presents box
plots of the ratio of the estimated variance over the true variance of ¢, across the
5,000 simulation runs. In each panel, these ratios are computed (from left to right)
for

e the originally proposed variance estimate applied to the synthetic data gener-
ated based on the originally suggested design (T/),

e the originally proposed variance estimate applied to the synthetic data gener-
ated based on the design used in practice(T" J?mc),

e the alternative variance estimate applied to the synthetic data generated based
on the originally suggested design (THRR),

e the alternative variance estimate applied to the synthetic data generated based
on the design used in practice (T5,%).

Ideally, the box plots should be centered around one with small variability. From
the box plots it is obvious that the alternative variance estimate should be preferred
even if the originally proposed variance estimate would be unbiased since the alter-
native estimate shows far less variability than the original estimate for all simulation
settings especially for small m for which the estimated variance can be more than
10 times the true variance in some of the simulation runs for the original variance
estimate. The panels also illustrate the risk of negative variance estimates for 7.
Only for m = 100 we do not obtain any negative variance estimates in any of the
simulation runs. Finally, the panels illustrate the positive bias of T for the synthesis
design that is usually applied in practice once the sampling rate is 5% or higher. As
the sampling rate increases so does the bias. The risk of negative variance estimates
and the potential bias of T are further illustrated in Table 1. The table contains

7



ss=1%

$5=5%

ss=10%

$5=20%

Figure 1: Ratio of the estimated variance over the true variance of ¢, across the 5,000
simulation runs for different sample sizes (ss) and different number of imputations
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Table 1: Simulation results based on originally proposed variance estimate
samp. m (T})/var(gn) %1y <0 (T}‘)/var(cjm) CI cover (T7)
frac. RRR  prac RRR prac RRR prac RRR  prac

1% 5 1.03 1.02 10.26 10.06 1.12 1.11 98.72  98.80
20 1.02 1.03 020 0.22 1.02 1.03 97.02 96.70

100 1.01 1.03 0.00 0.00 1.01 1.03 94.96 95.06

5% 5 1.01 1.09 10.30 898 1.10 1.17 98.68 98.76
20 1.01 1.10 0.20 0.10 1.01 1.10 96.32 97.02

100 1.01 1.11  0.00 0.00 1.01 1.11 9554 96.28

10% 5 1.02 1.19 9.60 734 1.09 1.25 98.66 98.58
20 1.03 1.23  0.16 0.04 1.03 1.23 96.56  97.50

100 1.00 1.21  0.00 0.00 1.00 1.21 94.40 96.50

20% 5 1.01 1.37 778 466 1.06 1.40 98.60 99.24
20  1.02 1.45 0.06 0.02 1.02 1.45 96.00 97.86

100 1.00 1.50 0.00 0.00 1.00 1.50 95.24  98.66

the ratio of the average estimated variance over the true variance before (77) and
after (1) adjustments for negative variance estimates. Furthermore, the fraction of
negative variance estimates for 7y and the coverage rates of the 95% confidence in-
tervals for T are reported. The coverage rate represents the percentage of the 5,000
synthetic 95% confidence intervals that cover the true population mean. All results
are presented for the originally proposed synthesis design (RRR) and for the design
used in practice (prac). We note that 7 is unbiased if the RRR design is used.
However, for m = 5 the fraction of negative variance estimates varies between 7.8%
and 10.3% leading to an adjusted variance estimate T} that is 6% to 12% too large
even under the RRR design. As a consequence coverage rates vary around 98.8% for
small m even though the original estimate T is unbiased. For the synthesis design
that is usually used in practice T is biased for most scenarios. Only if the sampling
fraction is 1% no bias can be observed. Once the sampling rate increases, the true
variance is overestimated. This overestimation increases from 10% for a 5% sample
to up to 50% for a 20% sample. As a consequence all coverage rates are too high
even if a high number of synthetic datasets (m = 100) guarantees that no negative
variance estimates occur. Table 2 presents the same results based on the alternative
variance estimate. The variance estimates are unbiased for all scenarios leading to
actual coverage rates that are very close to there nominal coverage.

I also evaluated the effect of changing the synthetic sample size relative to the
original sample size. Increasing the synthetic sample size will reduce the risk of
negative variance estimates and stabilize the original variance estimate. It has only
small effects on the alternative variance estimates, since only the variance between
the datasets b,, is reduced if the sample size is increased. The variance reducing effect
is negligible for the alternative variance estimate once m = 20 or more datasets are
generated. But even if the synthetic sample is four times larger than the original
sample, the alternative variance estimate still shows far less variability and up to
4.6% of the original variance estimates are negative for m = 5.



Table 2: Simulation results based on alternative variance estimate

samp. m  (Tu)/var(g,) CI cover (Tyy)
frac. RRR prac RRR prac
1% 5 1.02 1.01 94.86 94.54
20  1.01 1.01 95.04 94.72

100  1.01 1.01 94.82  94.86

5% 5 1.01 1.02 95.24  95.08
20 1.01 1.01 95.28 95.10

100 1.01 1.00 95.50  95.50

10% 5 1.01 1.02 9488  94.96
20 1.02 1.02 9524  95.10

100 1.00 0.99 9456  94.56

20% 5 1.00 1.00 94.64  95.16
20 1.01 0.99 95.08  95.06

100 1.00 1.01 95.56  95.58

5 Conclusions

Releasing fully synthetic datasets can be a viable data dissemination strategy for
highly sensitive data for which traditional SDC methods do not offer sufficient pro-
tection. If all records in the released dataset are synthetic the risk of disclosing
sensitive information is very low. However, with the initially proposed strategy to
generate these datasets there is a small chance that some originally observed records
are still included in the released files since only those units that did not participate
in the survey are synthesized. Even though it has been argued that all records in
the population could be synthesized, the traditional point and variance estimates
for fully synthetic datasets are derived under the assumption that the originally
observed records remain unchanged. In this paper I illustrate that this can lead to
a biased variance estimate if the sampling rate of the original sample is high (5%
or higher). I derive an alternative variance estimate that has three advantages over
the originally proposed variance estimate. First, it is always unbiased irrespective
whether all records or only those records that did not participate in the survey are
synthesized. Second, it can never be negative. Third it has less variability than the
originally proposed variance estimate. The potential bias for the original variance
estimate might be negligible in many practical situations where sampling rates are
1% or even lower and negative variance estimates can be avoided by increasing m
although Drechsler et al. (2008a) obtained some negative variance estimates even for
m = 100. Still, the alternative estimate shows far less variability in the simulations
presented in this paper and there are no obvious drawbacks from using this estimate
instead of the original one. However, it must be noted that the derivations presented
in this paper are based on the assumption that a simple random sample was used for
the original sample and for the synthetic sample. Most surveys are conducted under
more complex sampling designs. Generalizing the results presented here for other
sampling designs is an important area for future research. Furthermore, the variance
estimate is only valid for v/N consistent estimates. If the estimate converges with a
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different rate, the variance estimate has to be adjusted. However, these adjustments
should be straightforward if the rate of convergence is known.
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