WP. 10
ENGLISH ONLY

UNITED NATIONS ECONOMIC COMMISSION EUROPEAN COMMISSION
FOR EUROPE (UNECE)

STATISTICAL OFFICE OF THE EUROPEAN
CONFERENCE OF EUROPEAN STATISTICIANS UNION (EUROSTAT)

Joint UNECE/Eurostat work session on statistical data confidentiality
(Tarragona, Spain, 26-28 October 2011)

Topic (ii): Software research and development

A computational framework to protect tabular data -
R-package sdcTable

Prepared by Bernhard Meindl, Statistics Austria



A computational framework to protect
tabular data - R-package sdcTable

Bernhard Meindl*

* Department of Methodology, Statistics Austria, Vienna, Austria,
bernhard.meindl@statistik.gv.at

Abstract. In this contribution we give an overview about recent developments done in
R-package sdcTable. sdcTable is free and open source software that is available on the
R comprehensive archive network http://cran.r-project.org. It provides methods to
solve the secondary cell suppression problem for multidimensional and hierarchical tables.

1 Introduction

Over the last few months a lot of work has gone into sdcTable resulting almost in a
complete rewrite of the software. In fact, the redesign of the resulted from serveral
weaknesses of the original package. To overcome existing limitations the starting
point was to set up and define clear design goals for the new implementation of
sdcTable.

It must be noted that at the time of writing, the new package has not yet been up-
loaded and published on CRAN. However, at the time of the Joint UNECE /Eurostat
conference in Tarragona, the package will already be published. Also, the new pack-
age will come bundled with a package-vignette including a complete real-life example
that will help users getting started to protect data using sdcTable.

2 Design goals

The following design goals have been kept in mind while developing the new version
of package sdcTable.

Make extensive use of S4-classes: One of the main concepts during the develop-
ment process that was used is data encapsulation. This means that data-structures
that often occur are modeled within R as S4-classes. S4-classes can be considered as
data objects having one or more slot. Each slot can hold any data structure, prim-
itive types such as vectors, lists or objects of any existing class that has been defined.



Each S4-class consists also of a validity function that ensures that an instance of
a class cannot be created or modified if any slot violates the class-definition. Fur-
thermore, it is possible to write additional validity checks that ensure that instances
of a given class do not violate additional constraints that are checked in the custom
validity function which is called whenever an instance of a class is created or mod-
ified. These automatic integrity checks automatically lead to robustification of the
software help finding errors early during the implementation.

Use S4-methods whenever possible: Once all S4-classes have been defined
it is the next step to write methods that can be applied to specific classes. The
advantage of using S4-methods is that since these methods are always applied to
objects of well-defined classes, a lot less error-checking is required. One can always
safely assume that the input objects are valid. Thus, using S4 methods leads to a
cleaner implementation and robustification of the underlying algorithms.

makeProblem()

setInfo()

primarySuppression()

setInfo()
protectTable()

getinfo()

Figure 1: Overview on user-visible functions in package sdcTable

abstract as much detail from users as possible: While it is possible for power
users to view and modify the source code to fit their personal needs, it was always an
important target to abstract as much details of the implementation from end-users
as possible.



A user who wants to protect tabular data should be able to get started quickly.
Therefore, only a couple of functions are exported to users and can (and should) be
used. The main functions of the new package sdcTable that are available to a user
are shown in Figure (1).

Function makeProblem() must be used to create objects of class sdcProblem
which forms the base of all further steps. Default parameter that have been set
while creating the data object such as assumed known lower and upper bounds can
be modified using function setInfo(). Due to the fact that the underlying code
is completely based on S4 classes and methods, modification is only possible if all
validation checks are passed.

primarySuppression() can finally be applied to objects of class sdcProblem.
By setting function parameters, the user can choose an existing primary suppression
rule and set corrsponding parameters. Currently the frequency rule, the p-percent
rule and the nk-dominance rule are supported. However, using function setInfo()
one can very easily implement custom primary suppression rules.

Function protectTable() can then be applied to objects of class sdcProblem.
Depending on the function parameters that have been set, primary sensitve table
cells are protected using either a cut and branch based algorithm (HITAS) that pro-
tects sub-tables in certain order, using an implementation based on the GHMITER
algorithm (HYPERCUBE) or in an ’optimal’ way (OPT). This is however only pos-
sible for small problem instances. A successful run of function protectTable()
results in an object of class safeObj. Using getInfo() one can extract all kind of
useful information from objects of such class, most importantly of course a data set
containing all table cells along with the suppression pattern.

document everything: To help getting users (and developers) getting started
with sdcTable a main goal was to document everything. Even though most meth-
ods will not be exported and thus will not be visible to users, all methods are properly
documented in the source code. Also, sdcTable comes along with a package-vignette
that provides a real-world example with a hints in addition to the runable code that
is provided in the help files that are available for each exported and visible function.

3 An example

In this section we will walk through the process of how sdcTable can be used to
protect a tabular structure that is based on two variables. We start from underlying
micro data and show how to create an object that for which primary sensitive cells



can be identified and suppressed. Finally, the suggested way to perform secondary
cell suppression and to extract information from the resulting object are discussed.

3.1 Underlying data

Suppose one has a table featuring information on age, region and the corresponding
frequencies of 100 people. The aggregated data by gender and the four different
regions could are supposed to be available as a data frame object dataset in R and
are shown below:

> print(dataset, row.names = FALSE)

gender region Freq
female Region A 2

male Region A 24
female Region B 12
male Region B 9
female Region C 11
male Region C 15
female Region D 9
male Region D 18

We see that there is one cell (females in Region A) to which only 2 people contribute.
The goal is now to protect this cell using sdcTable.

3.2 creating an instance of an sdcProblem:

The first step is to create a suitable object of class sdcProblem that can then be
used to identify the primary sensitive cell according to the frequency rule and find
a suitable suppression pattern to protect this sensitive table cell. To do so, we need
to call function makeProblem(). The required input for this function is:

e data: in this case we will use the aggregated dataset shown in section 3.1. It
is however also possible to make direct use of the micro as pre-aggregation of
data is not necessary.

e information on the structure of the variables defining the table: in
this case there are two variables (gender and region) defining the table. Both
variables are hierarchical in the sense that for both variables a total (the sum of
the level-codes) exists. Since the hierarchical structure of variables can be quite
complex, a standardized way to recode the variables is required. Therefore, a
use must provide information on all possible levels of the variables defining the
table to the program. This information has to be provided in a well-defined
format, which is described below for the two variables in the example.



e additional information: the function can also deal for example with data
for which sampling weights are available and need to be specified. The doc-
umentation of makeProblem() gives a lot of information and examples about
all parameters that can be set.

To specify information about dimensional variable gender one has to provide a
data frame that contains exactly two columns. The first column specifies the levels
while corresponding codes that have to be provided in the second column of a data-
frame. It is important to note that the complete hierarchy needs to be specified.
This means that rows for all possible characteristics for a given dimensional variable
need to be listed, even codes that are not available in the input data set because the
complete data structure is internally built from scratch using this information.

Levels are listed using strings consting only of *@’s. The number of characters is
then used as the (numeric) level of the corresponding level-code. The most simply
hierarchy consists of several codes that add up to exactly one total. This is the case
for the dimensional variables gender and region of this example. One would have
to provide a data frame for dimensional variable gender as listed below:

> print(levellnfo.gender, row.names = FALSE)

levels codes

@ Total
(C]e] male
Q0 female

The first row specifies the Total of this hierarchy that is simply calculated by summa-
tion over the two characteristics male and female that are both found in the input-
dataset. The information has to be provided using a top-down approach starting
from the total that is defined as level 1 (@ has one character). Below the correspond-
ing level are listed. Both characteristics are of level 2, thus two characters (@@) are
required to model this information.

In a similar way the required information about the dimensional variable region
is specified. The total is again specified in the first row and the 4 characteristics
that contribute to the total are all of level 2, thus requiring 2 characters in the code
specifying the level in the first column as one can see below.

> print(levellnfo.region, row.names = FALSE)

levels codes
@ Total
@@ Region A



@@ Region B
@@ Region C
@0 Region D

However, level structures can be quite complex and sub-levels are inserted in
place. For example if we had some sub-regions which together form Region B one
would have to insert rows below this region with levels consisting of three characters
(@@@) and the corresponding codes. However, in this case these characteristics must
be available in the input data set instead of the information for Region B because
all values for this region could be calculated from the codes of the lower levels.

The next step is to call makeProblem() with apropriate parameters. In this
simple example we have to provide the data as shown in (3.1), a list whose elements
contain data-frames holding level-specifications which names of the corresponding
variables within the input data set. Furthermore it is required to specify the indices
of the dimensional variables within the input dataset and providing information to
the software if the input data are microdata are already pre-aggregated. Since we
are dealing with the second case, we have to set parameter isMicroData to FALSE.

> # a list containing information on levels

> dimList <- list(levellnfo.gender, levellnfo.region)

> names(dimList) <- c('gender', 'region')

> prob <- makeProblem(

+ data=dataset,

dimList=dimList,

dimVarInd=1:2, # indices with dimensional variables
freqVarInd=3, # index with cell counts
isMicroData=FALSE

+ + + + +

)

The result object prob after calling makeProblem) is of class sdcProblem and
will be used as input for primarySuppression() and protectTable().

3.3 Primary cell suppression

The identification of primary sensitive table cells is usually achieved by applying
function primarySuppression() to objects of class sdcProblem such as object prob
that was created in (3.2). In this simple example we show how to use the frequency-
rule that will identify and mark as primary sensitive all cells that have counts below
a given threshold. We note that it is easily possible to implement a custom primary
suppression rule using function setInfo() which is of course documented in the
package itself.



Marking all table cells with frequencies below a threshold of 4 is done as it is
shown below. Specifying type==’freq’ selects to apply the frequency rule and
passing parameter maxN changes the default value for this rule. The function call to
mark cells with counts below 4 as sensitive is given by:

> prob <- primarySuppression(prob, type = "freq", maxN = 4)

This result again in an object of class sdcProblem. Having identified primary sen-
sitive cells it is required to protect these cells by eventually finding additional sup-
pressions that are needed to adequately protect sensitive table cells.

3.4 Secondary cell suppression

The secondary cell suppression problem can be solved using protectTable(). By
default each primary sensitive cell is considered as protected if it is not not possible
to exactly recalculate its cell value. This can of course be changed using function
setInfo() and changing required upper- lower- or sliding protection levels. For now
we keep the defaults and want to find additional suppressions using protectTable ()
with the optimal algorithm since we the problem is that simple. All parameter that
can be passed to the function are again documented in the package-manual.

> result <- protectTable(prob, method = "OPT", verbose = FALSE)

After a successfull run the object result is of class safeObj. It is then easy to
extract the required information from such an object. One could use getInfo()
to extract the final data set that contains all level-codes specified in the hierarchy
definitions along with cell counts and the anoymization states for each table cells.

> getInfo(result, type = "finalData")

gender region Freq sdcStatus

10 male Total 66
11 female Total 34
12 Total Region A 26

1 female Region A 2 u
2 male Region A 24 X
3 female Region B 12 X
4 male Region B 9 X
5 female Region C 11 ]
6 male Region C 15 ]
7 female Region D 9 ]
8 male Region D 18 ]
9 Total Total 100 s

s

s

s



13 Total Region B 21
14 Total Region C 26
15 Total Region D 27

In this case we see that we are dealing with 1 (sdcStatus==’u’) for which a
total of 3 additional cells needed to be suppressed (sdcStatus==’x’). Therefore, a
total of 11 (sdcStatus==’s’) may be published for this simple table.

4 Conclusion and Outline

The design principles that were adhered to during the redesign of sdcTable make it
easier to expand, change, modify and adjust the software.

Due to the changes in the underlying code-base, it will also be easier to include
new algorithms to protect sensitive information in tabular data such as rounding
or perturbation algorithms. The clean package design and definition of well-defined
classes for data-structures that are used throughout the software also make it sim-
pler to test or include different solvers that are required when trying to solve the
secondary cell suppression problem using (mixed) linear programming techniques.
Automatic validation checks lead to a more robust implementation.

The next step in the evolution of sdcTable will be extensive testing and perfor-
mance optimization. But since the package design is modular, it is easy to measure,
test and probably to improve the performance on several key-steps of the algorithms.
Due to the existence of R-packages such as Repp it is also possible to include C/C++
code in R which can of course be exploited to improve performance even further.

Another important step in the future development will be the improvement of the
functions and possibilities of the package that are available to users by taking into
account the feedback of people actually working with the software. However, there
are no plans yet to provide a graphical user interface for the software as feedback
has already shown that calling the software using batch-jobs using the command
line interface is the preferred way for most subject matter specialists working with
the software.

References

Fischetti, M. and Salazar, J. J. (1999) Models and Algorithms for the 2-Dimensional
Cell Suppression Problem in Statistical Disclosure Control. Mathematical Pro-
gramming, 84, 283-312.

Fischetti, M. and Salazar, J. J. (2001) “Solving the Cell Suppression Problem on
Tabular Data with Linear Constraints”, Manage. Sci., 47/7, 1008-1027.



de Wolf, P. (2002) “HiTaS: A Heuristic Approach to Cell Suppression in Hierarchical
Tables”, Inference Control in Statistical Databases, From Theory to Practice,
ISBN 3-540-43614-6, 74-82.

Repsilber, D. (2002) “Sicherung personlicher Angaben in Tabellendaten”, Statistis-
che Analysen und Studien Nordrhein- Westfalen.

R Development Core Team (2007). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN
3-900051-07-0.

Meindl, B. (2009). sdcTable: Statistical disclosure control methods for tabular
data. published online.
<http://cran.r-project.org/web/packages/sdcTable/index.html>.

Eddelbuettel, D. and Francois, R. (2011). Repp: Seamless R and C++ Integration.
published online.
<http://cran.r-project.org/web/packages/Rcpp/index.html>.



