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Abstract: A strategy for assessing continuous microdata disclosure risk can be based on the robust
fitting of finite multivariate gaussian mixture, by using an unsupervised learning approach so that no
prior information about the “true” number of mixture components is requested. Computational
feasibility can be pursued by means of approximate methods. After a description of the proposal,
some simulation results are ilustrated together with an application to business census-like microdata
stemming from the Enterprises' System of Accounts survey by the Italian National Institute of
Statistics.

1 Introduction

Since for continuous microdata “all units are unique (rare) with respect to a small set
of quantitative variables” (AA.VV., 2010), the detection of statistical units which
show a low degree of consistency w.r.t. the generating process of the majority of
observations can constitute a relevant target. Several studies in the literature on
multivariate outlier detection cope with the problem of distinguishing abnormal
behaviours of observations under the condition data follow at least approximately,
eventually by means of suitable transformations, a Gaussian distribution. By analogy
with Neykov, Filzmoser, Dimova and Neytchev (2007), the strategy we propose for
detecting observations featured by some kind of heterogeneity, without restrictive
assumptions about the distribution of “clean” data, is based on the robust fitting of
finite multivariate Gaussian mixture according to the FAST-TLE algorithm
described by Neykov and Mueller (2003), whereas survey weight and missing value
issues (see Todorov, Templ and Filzmoser, 2011) are not addressed at present, being
a subject of future developments. Section two gives a short review of some basic
concepts, handling a description of the proposal together with some technical details
about the extension of robustness tools to finite Gaussian mixtures; the rest of the
paper discusses two applications. The first is a simulation exercise directed to assess
the performance of the proposed method against several patterns of data
contamination, tailored to give some insight about the second application. The latter
(at experimental stage) constitutes the primary aim of this paper and concerns
business census-like microdata stemming from the Enterprises' System of Accounts
survey by the Italian National Institute of Statistics.



2 Robustness and Finite Gaussian mixtures

The purpose of the robustness is to safeguard against deviations from the
assumptions, so that robust estimates are consistent even if the underling model is
only approximately true. As pointed out by Huber and Ronchetti (2009), since the
purpose of diagnostics is to identify deviations from the assumptions, good
diagnostic tools are usually robust. A key quantity is the breakdown point, the
smallest number of observations necessary to make an estimate aberrant. Considering
an estimator 7, a sample X of n observations on p variables and all possible
corrupted samples X' obtained substituting m original data points, denote

b(m) = sngT(X’) — T(X)H
Then, the finite sample breakdown fraction of 7 at the sample X is defined as

&, (T.X)= min{ﬂ :b(m) = oo}
n

Hence the higher g,(7, X), the higher the robustness of 7 at the sample X. A
breakdown fraction greater than 0.5 seems meaningless: the concept of data
contamination should not be referred to the majority of sample units. When data are
distributed according to a multivariate Gaussian law, the robust Mahalanobis
distance constitutes a popular tool for detecting contaminated units. To that aim, the
Minimum Covariance Determinant (MCD) method selects iteratively a subset of 4
observations whose the covariance matrix determinant is minimum. The location
estimate is computed averaging the best /4 points, whereas the scatter matrix is a
multiple of their covariance matrix (see section 2.3). The breakdown point for the
scatter matrix is the smallest number of observations which makes either the largest
eigenvalue not finite or the minimum eigenvalue equal to zero. Lopuhaid and
Rousseeuw (1991) prove that MCD estimates attain the highest breakdown fraction
0.5 when h=0.5(n+p+1). Several improvements of the MCD method have been
proposed and some of them are discussed by Cerioli (2010). The FAST-TLE
algorithm (Neykov and Miiller, 2003) encompasses a wide class of robust estimators
and can be expressed as a sequence of steps which yields an iterative process. Let
(...) a log-likelihood function and W), i=1,...,n, a permutation of indices such that:

K(Xv(i);e)Zf(xv(M);ﬁ)’ Xv(i) ERP, izl,"-,}’l
Hence, given h<n, the maximum trimmed likelihood estimator of & is defined by:
h
TL, = argmax ZE(XV(U;O) (1)
0 i=1

An iterative process gives an approximate solution to (1). Given a subset of 4
observations and the estimate 8 associated to the 7" iteration, (=1, ..., R):



1. define Q" =Zh:£(xvu);9m),
i=1

2. for i=1,...,n, sort f(xv(i);H(”) in descending order and select the indices
u1),...,u(h) related to the first 4 values,

h
3. compute 6" = arg max UX,:)0)
0 i=1

4. by using 6", return to the step 1.

Each iteration constitutes a concentration step (C-step) since it selects the subset of 4
observations featured by the larger / log-likelihood contributions. Apart the
difference on objective functions to optimize, the similarity w.r.t. MCD is evident:
when a multivariate Gaussian distribution is assumed as statistical model, that is
O={u, £}, MCD C-steps select the & observations with the smallest distances and
the scatter matrix with the lower determinant (Rousseeuw and Van Driessen, 1999).
The FAST-TLE framework represents a natural way to mimic robustness features of
MCD estimators when finite Gaussian mixtures are used:

L(x,:0)= 20 0N (x ik ) Ve 0,20, 3 0,=1 ()

The immediate consequence is the possibility to extend findings about robustness
against data contamination to non normal data.

2.1 The breakpoint of TLE

A fundamental result due to D.L. Vandev, establishes a link between the d-fullness of
L(x,i;6) and the breakdown point. A function f{#) on the topological space © is
subcompact if the sets {# € O: (@) < C} are compact or empty for every constant C;
a finite set F={ f1(#),..., /,(8)} of n functions is d-full if for each subset of F having

cardinality d, the supremum is a subcompact function. Roughly speaking, the value d
represents the number of observations necessary to make a unique guess for the

parameter 6. Then, it is possible to prove that if the set F={-/(x;;0), i=1,...,n} is d-
full and 0.5(n+d)<h<(n—d), the breakdown point is not less than (n—4)/n. Vandev and
Neykov (1993) show that if £(x;;6) follows a multivariate Gaussian distribution and

0={u, X}, then d=(p+1), whereas Neykov, Filzmoser, Dimova and Neytchev (2007),
for finite Gaussian mixtures having G components and distinct parameters achieve
d=G(p+1); the breakpoint obtained from d=G(p+1) is referred to parameters

0= tte, T}, g=1.....G.

2.2 Fast approximations on large datasets

Since each C-step involves many estimations conditionally on different numbers G of
mixture components, several parameterizations of the covariance matrix (see Fraley



and Raftery, 2002, 2006) and the model selection through the Bayesian Information
Criterion, using fewer C-steps improves the speed of the algorithm. Rousseeuw and
Van Driessen (1999) suggest a strategy depending on data size which can be easily
applied to our framework. Defining G, the highest candidate value for the number
of mixture components:

1. for small »n:

a. select J; initial subsets having cardinality G, (p+1): note that the probability
to select clean data is inversely related to the number of observations,

b. for each subset, number G and parameterization of the covariance matrix,
compute G,={ g, X}, g=1,...,G, select the best model, sort f(x[;ﬁ) (=1,...,n)
in descending order and keep the indices W(1),...,uh)related to the first A
values: the cardinality becomes #,

c. for each subset carry out a very small number of C-steps,

d. for the subsets featured by the J, highest log-likelihoods carry out C-steps until
convergence and select the best model.

2. for larger n:
a. partition data in Jy non-overlapping subsets having roughly the same size and:
- select Jj/Jy subsets having cardinality G, (p+1),

- carry out the step b. previously described, obtaining subsets with cardinality
hlJy,

- perform the step c. as above and select best J5 results from each of the J,/Jy
subsets.

b. Pool the Jy non-overlapping subsets and, for each of the J3 Jy outcomes, carry
out a very small number of C-steps by using subsets having cardinality /; then
retain the best J; results.

c. In the full dataset, starting from the J3 outcomes achieved from b., take several
C-steps and keep the best result.

2.3 Corrections for consistency and small sample bias

If x is constrained to lie in the subspace 0< (X—u)t > (x—p) < (h), where 7(h) can be
considered as the A" order statistic of a sample of n squared Mahalanobis
distances, then (Tallis, 1963):

E(x)=p Cov(x)=c¢ (h)_1 z
a(h)" =P{x;..<n(h)}/P{x; <n(h)}

Hence, to inferential aims about the whole sample, the inflation factor c;(%) for X has
to be computed. An approximation that works well even for small samples is:



¢,(h)=(h1n)/ P s < 2y mnin)

That correction is not sufficient to make the scatter matrix unbiased in small samples.
The problem is addressed by Pison, Van Aelst and Willems (2002), through
simulation results based on affine equivariance of multivariate estimators of location
and shape. Affine equivariance means that affine transformations (linear
transformations followed by translations) of data make estimators changed
accordingly. If A is a non singular p-p matrix, ¢ a p-1 vector and X=(x,...,Xy):

A(XA+1,¢') = 4(X)A+1,¢
S(XA+1,c')=AZA

That feature is invoked to make analyses independent from coordinate transformations:
since squared Mahalanobis distances are no affected by affine data transformation,
they were able to obtain empirical estimates for the bias of the MCD scatter matrix and
fit formulas to approximate the correction factor at any »n and p. The rationale behind
their results can be explained as it follows: by using standard Gaussian distribution, for
fixed n and p, unbiased estimates of X should give £ (ﬁ) =I,, which in turn implies the
pth root of the determinant [3| is equal to one. Hence, performing & Monte Carlo

replications, the correction factor estimate for the small sample bias becomes

AgoprY
c,(h)=|k ;z

In our setting, 4 and n are related to the TLE on the whole, while corrections can be
computed for each mixture component. By assigning the trimmed n—/4 observation to
components g=1,..,G according to a suitable criterion (i.e. the minimization of the
Mahalanobis distance), the number 4, of statistical units which maximize posterior
probabilities p(g | Xx,;) and the number n, of statistical units which best fit the
assignation criterion are used in place of 4 and n.

2.4 Inferences

Cerioli and Farcomeni (2011) give an in-depth analysis of error rates in multiple
hypotheses testing for multivariate outlier detection. In our framework, since each
observation, conditionally on its membership to the g™ mixture component, is
assumed to come from a Gaussian distribution, if investigated hyphoteses are

Ho,izxg,i~N(ﬂg’zg) 3)

a multiple test problem arises. Given robust estimators for y, and X, tests (3) are
based on estimated robust squared Mahalanobis distances

t A

Dg,iz = (Xg,i _'[lg) Z;l (Xg,i _l[lg)



The outcomes related to the gth mixture component can be illustrated as follows:

Hynot rejected  Hj rejected Total

Hy True Ng,0/0 Ag1/0 ngo
H, False Ng0/1 Mg 1/1 Ng.1
Total ne—R R Ny

Quantities ng01 and ngip are indicated as the amount of “masking” (M) and
“swamping” (S). The latter is controlled by the level  of the test whereas the former
depends on the power. Becker and Gather (1999) proposed to control false rejections
changing the null hyphotesis and adjusting the size of the critical region:

H,: 0751 {Xg,i -~ N(lug’zg)}

_1_ _ l/ng
ag—l (1-a)

n

(4)

Thus, under Hy, with probability 1—¢, no observation lies in the critical region. By
analogy to Hardin and Rocke (2005) findings about MCD estimates, since extreme
observations are approximately independent from location and scale estimates
obtained from a clean subset of data, the intersection between multiple tests sharing
same estimates should be negligible. A simple way to correct the low power problem
is applied by Cerioli (2010), considering that an increase of swamping can be
accepted to alleviate the amount of masking if the absence of contamination is
confuted: when Hp in (4) is rejected, each observation is tested at the « level
according to (3). Distributional results about squared Mahalanobis distance estimates
are well known. Those related to observations used in parameters estimation are
distributed as scaled Beta (Wilks, 1963):

2
—1 —-p-
D 42~M3m(§,”ng1J, iegN{L-h} (5

Remaining data points are distributed according to prediction regions for multivariate
normal having a given probability to contain the next x; observation (Chew, 1966):

n =1)p .
D%ﬂ) et} ©

Observations whose maximum p-value over g=1,...,G, falls in the critical region of
tests (4) or (3) are labelled as atypical.

3 Some empirical results.

A simulation study allows to get some insight about the effectiveness of the proposed
method. Let clean data be distributed as a mixture of two spherical normal random



variables, using 7=90 (or n=180), p=6, 14,={0-1,, 2c-1,} with c=(¥, o5s/p)"", P~{5/9,
4/9}. Added contaminated data points (henceforth cdp) are 20% of the observations
in the smallest clean component: approximately 8 (or 16). By analogy with the
simulation settings of Hardin and Rocke (2004), three patterns of contamination are
considered: separate, radial, diffuse. The former consists in a cluster of observations
generated by a N(4c-1,, 1), while the radial one forms an anulus around the clean
data and is constructed by points from Gaussian laws with 2 times the original
covariances; the diffuse contamination is drawn by a normal law having location and
shape of the entire datasgt. An acceptance-rejection rule ensures disperse points fall
outside both clean data X, ¢ ellipses.

Fig 1 Two dimensional examples: separate, radial, diffuse contaminations (symbol A).

For each pattern, 500 Monte Carlo replicates were performed by means of the
software R (R Development Core Team, 2010), by using the package Mclust (Fraley
and Raftery, 2006) for parameters estimation and model selection within C-steps. The
breakpoint fraction used is &,=0.25 whereas a=0.05. Table 1 shows a negligible
swamping while, for =90, masking is evident for diffuse and radial contaminations
because of the small sample size that affects the power and the small number of
contaminated observations which inflates the respective proportions. On the whole,
considering the severity of those patterns, the performances seem acceptable.

N=90+contaminated obs.  N=180+contaminated obs.
Type I error Type Il error Type I error Type Il error

Separate cont. 0.0099 0.0359 0.0142 0.0096
Radial cont. 0.0058 0.1538 0.0098 0.0172
Diffuse cont. 0.0062 0.1425 0.0095 0.0234

Table 1 Fractions of I and II type errors (|S|/n and, respectively, |M]/|cdp)).

4 Application to business microdata.

The Enterprises System of Account survey (ESA) is a structural-type survey carried
out by Istat on a census basis. All economic activities are surveyed, excluding
agriculture, zootechnics, hunting and fishing, financial activities (except for the
financial intermediation and insurance auxiliary ones), public administration and



associative organization activities as well activities carried out by families and
cohabitations. Data of 2004 ESA survey are stratified by economic activity (NACE
Rev. 1.1) and size class. To our aims, enterprises classified according to their main
activity are centre of interest while functional units (featured by different lines of
production) are ignored for simplicity. Hence, a set of 10,313 records is analysed.
Hundreds of variables are gathered in ESA survey and 68 of them are related to the
profit and loss account. A realistic disclosure scenario could involve a more restrict
set of balance items, i.e. focusing on subtotals more easy to learn or gauge: a
convenient selection can maintain a large extent of relevant information. Since
turnover, cost of materials together with power consumptions and goods to resale,
cost for services, staff costs, number of workers, earnings, are often sufficient to
achieve a “fingerprint” of an examined enterprise, they are assumed as (perhaps too
pessimistic) scenario variables. Considering first four NACE digits and two size
classes (henceforth ) in term of workers, [100, 499]U[500,+), 660 strata follow.

10% 20% 30% 40% 50% 60% 70% 80% 90%
1 2 2 4 5 8 13 20 38

Table 2 Quantiles of stratum sizes (four NACE digits and two size classes).

For reducing data sparsity it is possible to collapse strata having few units into a
pooled stratum. Given the minimum number of units requested, a collapsing
sequence is applied. Firstly, when necessary, NACE digits are step by step decreased
from 4 to 1; finally, if a stratum is still unsatisfactory, classes ¥ are ignored; thus, the
1** digit of NACE represents the lowest admissible data resolution. In a given step, a
statistical unit belonging to a stratum which unfits the threshold is assigned to the
next larger stratification level; the latter does not include units previously allocated
into strata above the minimum number of observations. A threshold of 80
observations (selected by trial and error to attenuate size differences), gives 76 strata.

NACE 4+W NACE 3+W NACE 2+W NACE 1+ NACE 1
N. of strata 21 18 22 10 5
N. of obs. 3346 2161 3032 1302 472

Table 3 Summary about collapsed stratification.

1% 5% 10% 25% 50% 75% 90% 95% 99%
77 82 84 94 116 156 200 226 357

Table 4 Quantiles of collapsed stratum sizes.

Without resorting to the collapse of lighter strata, estimations would be not feasible
or misleading. The price to pay is the voluntary aggregation of heterogeneous
observations. Mixture models are suitable to deal with a wide range of distributional
shapes and this circumstance contributes to make less problematic the interpretation
of results even though the genuine nature of the detected heterogeneity could always
be questioned because of the subjectiveness implicit in the collapsing strategy. The



total number of enterprises declared not compliant w.r.t. the distribution of the
remaining ones, by using &,=0.25 and a=0.05, is 2143. Conditionally on respective
strata, the fraction of candidate atypical units is showed in table 5. The results match
the conjecture large size companies are featured by weak exchangeability.

1% 5%  10%  25% 50% 75% 90% 95% 99%
0.117 0.142 0.155 0.184 0.204 0.228 0.262 0.273 0.288

Table 5 Quantiles of the number of “atypical” units divided by the stratum size.

By using the original strata definition according to four NACE digits and two size
classes in term of workers, table 6 shows some order statistics about the size of strata
to whom suspect units belong. The comparison w.r.t. table 2 makes evident no more
than 25% of those units fall in the first 70% of original strata.

5% 10% 25% 50% 60% 70% 75% 80% 85% 90% 95%
4 6 14 38 54 83 117 126 160 200 564

Table 6 Quantiles of sizes featuring original strata the “atypical” units belong to.

5 Conclusions

The detection of statistical units lacking in consistency w.r.t. the process generating
the majority of observations, represents a relevant first step to assess the disclosure
risk of business microdata. To that aim, in a simplified framework (ignoring survey
weight and missing value issues), this paper proposes robust finite Gaussian mixtures
and strata collapsing to perform reliable hypotheses tests. It is to note that task is not
sufficient to run out the risk assessment. Since those tests are uninformative about
the kind of data heterogeneity, any judgment requests further analyses and can imply
subjective choices: i.e. if atypical data form a separate cluster, then a threshold
should distinguish the harmless heterogeneity (intuitively, the larger the cluster size,
the lower the risk). Matters not investigated here will be dealt in future works as well
further studies to achieve a global strategy on disclosure risk evaluation.
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