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I. Introduction  
 

1. Large scale surveys in official statistics commonly produce a huge number of estimates related 

both to different  parameters of interest and to highly detailed estimation domains. These 

domains generally define non-nested partitions of the target population. When the domain 

indicator variables are available for each sampling unit at the sampling framework level, the 

survey sampling designer could attempt to select a sample which covers each domain. In so 

doing, direct estimates can be obtained for each domain and sampling errors at a domain level 

would be controlled.  

 

2. In the paper we present an unified and general approach for defining an optimal sampling design 

for one stage sampling design when the domain membership variables are known at the design 

stage. This case may represent the most frequent situation for establishment surveys and for other 

survey contexts (e.g. the social surveys or the agricultural surveys) if the domains are of 

geographical type (e.g.: type of municipality, region, province, etc.). However, the increasing 

development of data integration among administrative registers and survey frames will increase 

the applicability of the approach herein presented. Furthermore, we consider the challenging new 

environment in which different administrative data sources may be linked to some population 

subsets and thus the sampling frame may be partitioned according to the different number of 

auxiliary variables, deriving from several administrative and statistical sources.  

 

3. Our paper faces this complex and challenging situation and propose a coherent a general survey 

strategy which allows to face efficiently this new context and allows to fully exploit the use of 

ads. 

 

4. The approach is easy to implement and flexible covering as particular cases most both of the 

optimal solutions described in literature and the actual one stage sampling designs. The most 

relevant elements which characterize the generalization framework are: 
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(a) the balanced sampling design (Deville and Tillé, 2004) which, according to the different 

definitions of the balancing equations, represents a wide-ranging sampling schema.  

 

(b) The concept of planned domains (see section IV) which are subsets of the estimation domains 

within which the sampling sizes are defined in advance and allow to define in a simply and 

natural way either the traditional stratified (one-way) sampling designs (Cochran, 1977) or the 

multi-way stratified (or incomplete stratified) sampling designs (Jessen, 1970; Lu and Sitter, 

2002). 

 

(c) The superpopulation model for predicting the unknown values of the variables of interest 

allowing to obtain either equal or unequal probability sampling designs, within specific subset of 

population units. 

 

(d) A general form of regression estimator which allows the use of different functional forms of 

working superpopulation models linking the survey and the administrative variables. The 

estimates may be characterized by the following aspects: (a) are unbiased and efficient 

considering jointly the design and the model; (b) are calibrated on the existing administrative 

information; and (c) are consistent among different variables and different levels of aggregations. 

For some functional forms of the working superpopulation models, population synthetic data files 

of imputed data may be constructed; model and design unbiased estimates may be then obtained 

by a simple aggregation of the imputed data of the synthetic data files. 

 

5. The balanced sampling, the superpopulation models  and the regression estimators are well 

known in literature; within the framework here proposed, they play an instrumental role and can 

be usefully adopted as useful tools for the generalizations. The main and the new contribution of 

the paper is a clear definition of the informative context and the illustration of how well-known 

statistical tools may be properly adapted for defining a unified and generalized framework. The 

sampling solution is based on some recent, yet unpublished results (Falorsi and Righi, 2012), 

related to the algorithm for the definition of the optimal inclusion probabilities that consider the 

more realistic case in which the variables of interest are not known (and must be properly 

estimated) and takes into account the fact that the measure of accuracy is an implicit function of 

the inclusion probabilities.  

 

6. The paper is organized as follows. Section II states the informative context. Section III considers 

the entire chain of the statistical production process in the context here considered where 

different administrative data cover subsets of the target population. Section IV describes the 

proposed (unified and general) survey strategy. A focus on the estimation in developed in section 

V. Some brief conclusions are eventually given in section VI. 

 

II. Informative context 
 

A. Parameters of interest 
 

7. Let U be the reference population of N elements and let dU  (d=1, …, D) be a Domain of 

Interest, (DI), a generic sub-population of U with dN elements. Let rky  denote the value of the 

r-th (r =1, …, R) variable of interest in the k-th population and let and dk denote the DI 

membership indicator, being 1dk  if dUk  and 0dk  otherwise. Suppose firstly that the 

dk  values are known, and available in the sampling frame, for all units in the population. The 

parameters of interest are the RDQ   domains totals 

 

 

)(drt  


dUk rkUk dkrk yy 
 (r = 1,…,R ; d=1,…, D).               (2.1) 
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8. The expression (2.1) defines a complex multivariate multi-domain problem since there are R 

variables (multivariate aspect) and D>1 domains (multi-domain aspect) of interest. 

 

B. Auxiliary information 
 

9. Suppose that B (with B>1) administrative data sources are available and that each source covers a 

particular subset of population register which, for all practical purposes, identifies operationally 

the population U. Let us further assume that it is possible to link the units belonging to the b-th 

(b=1,…,B) administrative data source with those included into the population register and that the 

linkage may be realized without error; this framework, although simplified, characterizes many 

actual information contexts (as for instance that of the business surveys) where a unique 

identifier high quality code (e.g. the Vat code) is available. At the conclusion of the linkage 

operations, the subpopulation UUb   (b=1,…,B), for which the variables from the b-th 

administrative data source are available, may be distinguished in the population register. 

Therefore, for the generic unit k of Ub , it is possible to create the vector kb x  
of auxiliary 

variables extracted from the source b. The population register (denoted in the following with the 

suffix b=0) may be considered as a particular source covering all the population units; the 

domain of interest membership indicators, dk , may be derived from the variables available in 

the population register; let us further assume that the dk values are observed without 

measurement error. The subpopulations Ub  may overlap and so it is possible to partition the 

population register into subpopulations, Ua)( (a=1,…,A) -denoted in the following as Population 

Information Profiles (PIPs)- characterized by a diverse amount of auxiliary information. For 

each unit k in the PIP, Ua)( , it is then possible to build up a vector ka x)( of auxiliary variables, 

by merging the vectors kbx  (0,1,…,B) of administrative variables available for the unit. In order 

to illustrate this aspect, consider the example, shown in the schema 1 below, in which B=2. In 

this situation, partitioning U into A=4 PIPs is possible. For the first PIP, U)1( , neither of the two 

administrative sources are available, so for the generic unit k belonging to U)1( , the only 

auxiliary information available is that in the population register which implies kk xx 0)1(  . For 

the second subpopulation, U)2( , only the first additional administrative data source is available, 

which involves ),( 10)2(  kkk xxx . For the third PIP, U)3( , both the additional administrative 

data sources are available, entailing ),,( 210)3(  kkkk xxxx . Finally, for the fourth PIP, U)4( , 

only the second administrative source is available, implying ),( 21)4( kkk xxx  .  
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Schema 1. Example of the partition of the population register into Population Profiles with two 

administrative data sources(*) 

 Auxiliary variable 

Subpopulation Ua)(  

 Register 

Variables 

Source=0 

kx0  

Additional data sources 

Source b=1 

kx1  

Source b=2 

kx2  

U

n

i

t

s 

x        U)1( : no additional administrative source available. kk xx 0)1(   
x        

x x x x     
U)2( : only the administ rative source 1 is available. ),( 10)2(  kkk xxx  x x x x     

x x x x     

x x x x x x x x U)3(  both administrative sources 1 and 2 are available. 

),,( 210)3(  kkkk xxxx  x x x x x x x x 

x    x x x x 

U)4( : only the administrative source 2 is available. ),( 21)4( kkk xxx   x    x x x x 

x    x x x x 

x    x x x x 
(*) An x in a given cell denotes that the variable (in column) is available for the unit (in row) 

 

Note that each DI may be obtained by the union of the different subpopulation intersections 

UUU adda )()(  . For each intersection the vector of totals of auxiliary variables  

 

 

 


da Uk kadxa
)(

)()( xt  

 

 

may be considered as known. 

 

C. The working model  
 

10. The following working superpopulation model may be defined for the units belonging to Ua)(

(a=1,…,A):  

 

 

Ulk
lkuuEuEyyuE

yfyE

a
rlrkMrkarkaMrkarkrkaM

rkarakaakarkM

)(2
)(

2
)()()(

)()()()()(
,for

,0),(;)(;0)~(

~),()|(















θxx

             (2.2a) 

 

 

in which )(ME denotes the model expectation operator, )()( fa is a function depending on the 

unknown vector ),...,,...,(
)()()(1)()(  Grairarara a

θ of Ga)( parameters, rka u)(  is the error 

term; furthermore we assume 

 

 


 )(
)(

2
)(

2
)(

a

kararka v
                     (2.2b) 

 

 

where ka v)(  is a known auxiliary variable which in general may be expressed as function of the 

vector ka x)( , ra )( and )(a are scalar parameters.  
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11. We note that the model (2.2) could assume diverse functional ),( )()()( rakaa f θx forms in the 

different PIPs. Furthermore, we remark that in some cases, a given variable of interest, say the

thr , could coincide with an element, say gka x)(  , of the vector ka x)( . In this situation, the 

following relation holds  

 

 

gkakrakr xyy )()(
~    and 

0)( kra u 
.         (2.2c)

  

 

 

III. An overview of the overall statistical process 
 

12. The overall statistical process which starts from the collection of raw survey data and finishes 

with the publication of the estimates )(̂drt  of the target totals )(drt  could be roughly represented 

as the chain of the following process steps: 

 

(a) pre-processing 

 

(b) sampling design and selection 

 

(c) data collection 

 

(d) throughput 

 

(e) estimation. 

 

13. In this paper, the attention is mainly paid to the sampling and estimation steps, respectively 

illustrated in sections IV and V below; however, it is worthwhile to note that the availability of 

administrative data sources represents a strong input for revisiting all the production process 

steps, in order to define a coherent and self-consistent  strategy aiming at a fully exploit the 

informative context above described. Some remarks will be developed below. 

 

A. Pre-processing 
 

14. The frame illustrated in schema 1, in which the ads are linked to the population  register, has to 

be built up in this phase. In most of the actual survey contexts, this job could be successfully 

done only involving in a joint work people with different competencies: statistical methods, 

thematic knowledge and expertise on the specific contents of ads.   

 

15. Theoretically, the frame should be built specifically for each survey; but, nowadays most of the 

statistical organizations are facing budget cuts and thus a more realistic solution would be that of 

building a multipurpose frame which could be used for different surveys. The frame represents an 

enabling infrastructure. It plays a central role in the whole process chain and it is the result of a 

complex statistical process which is characterized by the following main actions: 

 

(a) The selection of the ads to take on board for building the frame. 

 

(b) The pre-treatment of the administrative data sources, for (i) identifying the statistical units from 

the administrative ones; correcting inconsistencies in the administrative variables; etc. 

 

(c) The record linkage in which each reconstructed unit of a selected ads has to be linked to the 

corresponding unit in the population  register. 

 

(d) The choice of the administrative variables to be included in the frame. These must be properly 

chosen.  
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16. The second and the third actions represent complex statistical and technical operations often 

based on statistical methods which are well known and experienced within the statistical 

organizations. The latter action (and somehow the first) seems to be the most complex; since 

apart from the methodologists, also people with conceptual and thematic competencies should be  

involved  for its completion: indeed, in the real survey contexts, there are a lot of variables to be 

considered in each administrative data source. A preliminary step should be that of performing a 

quality assessment of the overall ads and more specifically of some of the administrative 

variables; this assessment could be useful also for the subsequent process steps (as for instance 

the data collection) (Costanzo et al. 2011; Costanzo, 2012). After the quality assessment, the 

individuation of the subset of the core survey variables which may be considered as the most 

relevant for the survey objectives should be realized. An administrative variable could be 

included in the frame either if it coincides with a survey variable or if it is predictive of some of 

the core variables. The techniques of data mining (Cabena et al. 1997; Dulli et al. 2009) could be 

usefully adopted for performing both of the above actions (the individuation of the core survey 

variables, and the selection of a predictive subset of administrative variables). For a given survey 

occasion, the assessment of the prediction capacity of an administrative variable with respect to 

some of the core survey variables could be performed either on previous administrative and 

survey data or studying the relationship with the current administrative data with the current 

survey data collected with a pilot survey. 

 

B. Sampling 
 

17. The sample is designed and selected in this phase. In section IV, is described in detail a sampling 

method, based on balanced sampling, practical and easy to implement, which may represent a 

general and unified approach for optimal sampling in the context herein considered and allows to 

take into account the different information patterns defined by the PIPs. Furthermore, the method 

allows to take into account in the design phase the complex problem of the total non-response; 

some remarks on this topics are developed in section IV. 

 

C. Data collection 
 

18. The availability of the frame could represent a challenging resource during the data collection 

phase, especially in the case in which a computer assisted data collection technique (Web, CATI, 

or CAPI) is implemented. As for instance: 

 consider the case where an administrative variable, which coincides with a survey variable, 

is available of for a given sampling unit; in this case, the survey question could be omitted 

from the questionnaire which has to be filled out from the unit. We underline that the 

quality assessment of the overall ads and more specifically of the administrative variables, 

which coincide with the survey variables, become strictly necessary when a subset of the 

survey variables could be collected directly from the administrative data source. The 

implementation of the system, here briefly described, would be strongly facilitated by the 

development of metadata driven information systems. In the Business surveys context, the 

recent development of standard, as XBRL (XBRL, 2012), may represent a challenging 

enhancement.  

 The rka y~)( model predicted values with the related variance models 2
)( rka   could be used 

for checking the acceptability of the value rky collected from a respondent unit. Note that at 

the beginning of the survey operations, the predicted values can only be computed by 

applying the parameters models fitted on data collected from either a pilot survey or a 

previous survey. But  after some time, the data collected from respondents could be used 

for fitting new model parameters; in so doing it is important to check carefully the effect of 

the early respondents since, often, they may represent a segregated sub-populations 

(Falorsi et al. 2005).  
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D. Throughput 
 

19. A sufficient large sample size for each PIP, Ua)( , could help both in the edit and in the 

imputation, since the related methods could fully exploit the information deriving from the ads. 

As for instance, consider the donor imputation technique, and suppose that a given unit, say the 

k-th, should be imputed; a reasonable strategy for finding the donor could be the selection of the 

unit which has the minimum distance, according to some metric, with the auxiliary vector, ka x)( , 

of the sampling unit which has to be imputed. 

 

E. Estimation 
 

20. In section V an estimation strategy which allows to fully exploit in the estimation the existing 

administrative information. The estimates are calibrated, with respect to the available auxiliary 

information for each population sub-set da U)( . Furthermore the estimates are consistent among 

variables and among different levels of aggregation. 

 

IV. An optimal sampling strategy  
 

A. Sampling design and sampling selection schema 
 

21. A single stage random sample without replacement, s, of fixed size n, is selected from the 

population U, by a sampling design where the units are included in the sample according to the 

),...,,...,( 1  Nk π vector of inclusion probabilities which is built so as to assure predefined 

expected sample sizes, say hn
 
(where hn

 
are integer numbers) for given subpopulations hU  

(h=1, …, H) of size hN , hereinafter denoted as planned domains (PD), and therefore  

 

 

hUk kUk hkk n
h

 
 

  (h=1,...,H)                 (4.1) 

 

 

in which hk  is a PD membership variable available in the sampling frame for all units in the 

population, being 1hk  if hUk  and 0hk , otherwise. Without loss in generality, we 

assume that the PD are defined either as subsets of the DIs or of the PIPs; so that  both the DIs 

and the PIPs may be obtained as aggregation  of entire planned domains. The above assures that 

the expected sample size of a given DI may be obtained as simple sum of the expected sample 

sizes of the planned domain which are included in it. The same statement holds for a given PIP. It 

is clear that the planned domains may overlap. 

 

22. The sample selection is realized by the cube algorithm (Deville and Tillé, 2004) which selects a 

random sample such that  the below balancing equations are satisfied for any selection 

 

 

nδ  sk k                     (4.2) 

 

 

with ),...,( 1 Hkkk δδδ ,  being ),...,,...,( 1  Hh nnnn  a vector of integer numbers containing the 

sample sizes of the planned domains. The (4.2) assures that in each possible sample selection, the 

realized sample size for the planned domain hU  is fixed and equal to the expected one, hn . 

Generally, the balancing is only approximate. In our case the balancing equations (4.2) are 

always exactly satisfied since
 
the sum of the inclusion probabilities for each planned domain is 

an integer; the (Deville & Tillé, 2000; Deville and Tillé, 2004; pag. 905 section 7.3).   
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23. Let us note, that the sample design above illustrated represent a general schema and allows to 

define in a simply and natural way either the traditional stratified (one-way) sampling designs 

(Cochran, 1977) or the multi-way stratified (or incomplete stratified) sampling designs (Jessen, 

1970; Lu and Sitter, 2002). The Simple Random Sampling Without Replacement design with 

fixed sample size (SRSWOR) and the Stratified Simple Random Sampling Without Replacement 

design with fixed sample sizes in each stratum  (SSRSWOR) are special cases of balanced 

sampling; the proof are given in Deville and Tillé (2004, p.895 and p. 905) and in Deville and 

Tillé (2005, p. 577). In our framework the SRSWOR design is implemented with H=1 and       

k =n/N; the SSRSWOR is realized when the following two condition hold  


H

h hk1
1 ,  

hhk Nn /  for all hUk . A Multi-way sampling design may be obtained for instance by 

defining hUU dh  . 

 

B. Estimation 
 

24. Under the model (2.2), the estimator of the totals of interest may be expressed under the generic 

form (Lehtonen et al., 2003): 

 

 

     


A

a sk krkadk
A

a Uk dkrkardgen
aa

uyt
1 )(1 )(

)()(

/ˆ~̂ˆ 
                                  (4.3) 

 

 

where: )ˆ,(~̂
)()()()( rakaarka fy θx  is the sample estimate of the prediction rka y~)( ; 

)~̂(ˆ )()( rkarkrka yyu  represents the sample estimate of the residual rka û)( ; Uss aa )()(  .  

 

25. The estimator (4.3) is obtained as the sum of two addenda. The first  addendum , 

  

A

a Uk dkrka
a

y
1 )(

)(

~̂  , is the synthetic component of the estimator and represents its 

dominant component. The second addendum,  

A

a sk krkadk
a

u
1 )(

)(

/ˆ  , represents the bias 

correction term and is the minor part of the estimate being roughly equal to 0. The properties of 

estimator (4.3) are examined thoroughly in section V and therein are defined the conditions 

according to which the bias correction term equals zero; here we note that the estimator (4.3) may 

be computed if the sample size in each subset sa)(  is sufficient to build the predictions. The 

domain estimates for the generic DI dU  may be computed also in absence of sample in the 

domain, since the synthetic component may always be computed.  Eventually, we note that the 

predictions rka ŷ~)( differ from one model specification to another, depending on the functional 

form and from the choice of the auxiliary variables. 

 

26. Starting from the results given in Deville and Tillé (2004 and 2005), Falorsi and Righi  (2008) 

propose the following variance approximation of the estimates rdgent̂  : 

 

 

])1/1([)/(),|ˆ()ˆ(E
1

2
)()()(

2

)(
   


A

a Uk kdraksk kdrprdrdgenp
a

HNNtVtt nδπ
        (4.4) 

 

 

where pE  and pV
 
denote the expectation and the variance over repeated sampling,  being 
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kdra )()(  dkrka u )( kdrk g )(
 and 

kdrg )( )(drk Bδ
,       (4.4a) 

 

 

being   

 

1
)(

 AB dr
  


A

a kUk rkadkkk
a

u
1 )( )1/1(

)(

 δ
  

 

 

and 

 

  

)1/1(2   kUk kkk  δδA
. 

 

 

27. More recently, an alternative approximation of the sampling variance was considered in Breidt 

and Chauvet (2011) which is shown to account for the whole variance better than the 

approximation (4.4) when the balanced equations are not exactly satisfied and the cube algorithm 

executes the landing phase; but the same authors state that the approximation (4.4) is 

approximately unbiased in the case, herein considered, in which the balanced equations are 

exactly satisfied.   

 

28. Starting from (4.4) it is straightforward to build up a plug-in sampling estimate of the sampling 

variance  

 

 

]ˆ)/1([)/(),|ˆ(
ˆ

1

2
)()(

2
)(

)(
   


A

a sk kdrakksk kdrp
a

HNNtV nδπ
,   (4.5) 

 

 

in which kdra )()( ̂ )(
ˆˆ drkdkrku Bδ

 
and )(

ˆ
drB represents  the sampling estimate of the 

population vector )(drB .  

 

C. Definition of the optimal inclusion probabilities 
 

29. The inclusion probabilities vector should built up so as to achieve the following requirements: 

 

(a) to achieve the minimum cost solution; 

 

(b) to assure a sufficient accuracy of the domain estimates; 

 

(c) to assure a sufficient accuracy of the model parameters ra θ)( ; 

 

(d) to guarantee a fixed sample size for each DI and for each PIP, in a way to compute model 

assisted unbiased and efficient direct estimates. 

 

30. As far as concerns the specific measure of accuracy, we underline that at design phase, the 

accuracy may be measured by the Anticipated Variance (AV, Isaki and Fuller, 1982; Nedyalkova 

and Tillé, 2008). In our context, the AV is defined as: 

 

 

),|)ˆ((),|ˆ( 2
)()()( nδπnδπ    sk kdrdrpMsk kdr ttEEtAV
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   


A

a kdraMUk
k

sk kdrpM EHNNtVE
a1

2
)()()( )()1

1
()/()),|ˆ((

)(




nδπ

.    (4.6) 

 

 

31. The explicit expression of (4.6) is derived in the appendix A1; looking at the explicit expression, 

we note that for its calculation in the design phase it is necessary to assume as known the scalars 

parameters ra )( and )(a  (see Appendix A1). In practice the scalar parameters have to be 

estimated from pilot or previous survey data. The most influential parameter is the scalar 2
r ; the 

sample size of the pilot (or previous) survey should be sufficient to guarantee that the estimates 

of scalars 2
r  have a sufficient precision in order to obtain that there is only a limited impact on 

the overall sample size, n, by solving the below problem (4.7) considering either the upper or 

lower bounds of the confidence  intervals of 2
r . Finally, we note that in case of perfect model 

fit: that is rkrk yy ~ , then the anticipated variance coincides with the design variance; so the 

anticipated variance may be viewed as a general measure of the sampling accuracy.  

 

32. The fundamental results for the derivation of the AV of the estimates ira ̂)(  are given in appendix 

A2. Here we note that for some functional expressions fa)( , the calculus of the AV may 

necessitate the availability of an estimate, ra θ
~

)( , of ra θ̂)(  . In practice these model parameters 

have to be estimated from pilot or previous survey data; the same considerations developed for 

the accuracy of 2
r hold in this case.    

 

33. To take into account the previous requirements, the π  vector values are determined by solving 

the following problem: 

 

 































),...,1(10

),...,1;,...,1;,...,1(),|ˆ(

),...,1;,...,1(),|ˆ(

)(

)()()(

)()(

Nk

GiRrAaVAV

RrDdVtAV

cMin

k

airask kira

drsk kdrgen

Uk kk







nδπ

nδπ

,                         (4.7) 

 

where; )(drV  is a fixed quantity which defines the anticipated variance threshold of the total of  r-

th variable in the domain dU of interest; ira V)(  is a fixed quantity which defines the anticipated 

variance threshold for the estimate ira ̂)( . 

 

34. The solution of the problem (4.7) fulfils the expected minimum cost assuring the respect of 

)()(
1 )( RGRD

A

a a   
 constraints. The first set of DxR constraints in (4.7) are strictly related 

to the survey objectives and assure that the planned measures of accuracy of the domain sampling 

estimates are lower than given thresholds which are commonly defined on the basis of the 

relevance of the survey objectives and taking into account the survey budget. The second set 

)(
1 )( RG

A

a a  
 of constraints are of instrumental type and are aiming to assure that in each PIP 

there is sufficient sample size for allowing the calculus of estimator (4.3), by computing reliable 

estimates of the superpopulation model parameters. The technical details for the solution of the 

problem (4.7) are illustrated in Righi and Falorsi (2011) and in Falorsi and Righi (2008; 2011 and 

2012); in the latter work the authors, starting from the algorithms developed for the optimal 

allocation in stratified sampling (Bethel, 1989; Chromy, 1987), find a more general solution that 

consider the more realistic case in which the variables of interest are not known (and must be 
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properly estimated) and takes into account the fact that the measure of accuracy is an implicit 

function of the inclusion probabilities. The recent paper by Chauvet et al. (2011) treats the 

problem of finding the optimal inclusion probabilities in balanced sampling; the author propose 

the adoption of the fixed point algorithm; another relevant contribution on the same issue may be 

found in  Tillé and Favre (2005). Both papers do not deal with the case in which the balancing 

variables depend on the inclusion probabilities and represent only a partial solution to the 

problem related to the fact that the sampling variance is an implicit function of the inclusion 

probabilities. However we note that both papers suggest to use the same variance approximation 

adopted in this manuscript. 

 

Calibration phase 
 

35. After the optimization phase, in which the π  vector  is defined as solution of the problem (4.7), a 

calibration phase is performed (Falorsi and Righi, 2008) which changes as little as possible the 

optimal inclusion probabilities in such a way that summing up on each planned domain the 

calibrated inclusion probabilities gives an integer. The use of the Generalized Iterative 

Proportional Fitting algorithm (GIPF; Dykstra and Wollan 1987) assures that all the resulting 

calibrated inclusion probabilities are on the in the (0,1] interval. Although the calibration phase is 

essential, because it assures that the balanced equations are exactly satisfied (see section IV.A), 

in this paper it is not described since it actually represents a minor part of the overall strategy.  

 

V. Further notes on estimation 
 

A. Estimating the superpopulation parameters   
 

36. On a sample basis, the estimates of the parameters ra θ̂)(  may be computed by solving the 

following system of estimating equations (Kim and Rao, 2012): 

 

0hθx   ksk rkarakaark
a

fy /))ˆ,((
)(

)()()()( ,                    (5.1) 

 

 

where in which 

),...,,...,(/)),((
)(

)(
)()(1)()()()()()()(  Grkairkarkakararakaarka a

a hhhvf


 θθxh and 0 is a 

column vector of zeroes. The resulting estimates are optimal in the sense they are design 

unbiased  and the joint mean squared error with respect to the sampling design and the model is 

minimal (Godambe and Thompson, 1986; 2010). 

 

B. Estimator in a weighted form 
  

37. For a lot of functional forms, fa)( , the estimator rdgent̂  may be expressed as an usually sample 

weighted estimator: 

 

 

  


A

a sk dkrkdrgen
a

wyt
1)(

)(

ˆ
 (r = 1,…,R ; d=1,…, D),                                      (5.2) 

 

 

where the weights dkw  are domain dependent and can be obtained by solving the following 

calibration problem (Singh and Mohl, 1996) 
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















sk dxakadk

sk dkkdk

a

a

w

wDMin

)(

)(

)()(

),/((

tx



                (5.3) 

 

 

being,  ),/( dkkdk wD   a distance function between the direct weights, kdk  / , and the final 

weights dkw .   

 

38. The  weights corresponding to a linear relationship 

 

 

rakarkarakaa yf θxθx )()()()()()(
~),( 

                   (5.4)

  

may be obtained using the chi-squared distance 
2

)( ])/[(),/( )(

dkkdkkkadkkdk wvwD a  


. In this case the well-known mgreg estimator is obtained (Rao, 2002, pag.20; Särndal, 

Swensson,Wretman, 1992) and the explicit form of the weight is given by: 

 

 

kdkadkw  /)(  for 
Uk a)(

                  















sj jakajajjaja

sj jjadkdkUj jadkdka

a

dada

aa vv
)(

)()(

./)/(

)/(

)()(

)()(
1

)()()(

)()()(






xxx

xx

 

 

 

39. Other forms of distance may be defined (Singh and Mohl, 1996) allowing to bound weights in 

given ranges  kdkdkkdk UwL  //  , being L and U respectively the lower and upper 

bounds of the factors correcting the weights. The weights could also be defined on the basis of 

the ridge regression techniques  (Chatterjee, and Hadi, 2006), smoothing the influence of extreme 

influential weighted values.  

 

C. Conditions for the construction  of a synthetic file of imputed data having good 

statistical quality  
 

40. Following Kim  and Rao (2011), here below we examine the conditions under which (i) the bias 

correction term of estimator (4.3)  is equal 0 or (ii) the asymptotic bias of the synthetic part of the 

estimator (4.3),   


A

a Uk dkrkardsyngen
a

yt
1 )(,

)(

~̂ˆ  , is negligible.  

41. The condition (i) is fulfilled if  

 

 

0/ˆ
1 )(

)(

  

A

a sk krkadk
a

u 
.         (5.5) 

 

 

42. The above is essentially the congeniality condition of Meng (1994) used in the context of 

multiple imputation. The (5.5) is respected if and only if exists a vector α for which

kadk xα )( . In the special cases of linear or logistic augmented regression working models,  

the (5.5) is respected if the vector of the DI indicators  dk  is in the column space of the matrix 

 Nk akaa )()()( ,...1 xX . In the case etheroscedastic linear or logistic augmented regression 

working models, the above condition may be reformulated as kajadk
av xα )()(

)( 


 . 
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43. Turning now to the case (ii) the asymptotic relative bias of the synthetic part of estimator (4.3), is  

 

 

)/()/(

),(cov
)ˆ(

1

)(
,

drd
N

k dk

rkadk
rdsyngen

NtN

u
tRB

 






,        (5.6) 

 

 

where ),(cov )( rkadk u is the population covariance among the DI membership indicators dk  

and the residuals rka u)(  ),...,1;,...,1for ( )( AaNk a  . It follows from (5.6) that the relative bias 

of the  synthetic part of estimator (4.3) is negligible if the dk indicators are approximately 

unrelated to the model residuals rka u)( . This will be the case if the working model (2.2) is 

correctly specified. 

 

44. The expressions (5.5) and (5.6) clarify the theoretical conditions which justify the necessity of 

planning the sample size for each DI and for each PIP; furthermore they define the conditions for 

the constructions of synthetic files of imputed data rka ŷ~)(  for each unit in the population. The 

estimates of interest may be obtained as a simple aggregation over the population of imputed 

data. These estimates are unbiased (or nearly unbiased) either or if the conditions (5.5) is 

respected or the relative bias )ˆ( rdgentRB , as expressed by (5.6) is near 0. 

 

D. Synthesis of the properties of the estimator 
 

45. The main properties of the rdgent̂  estimator are listed below. 

 

(a) The estimates are design and model unbiased. 

 

(b) The estimates are efficient with respect to both the design and the model (see section V.A). 

 

(c) The estimates are calibrated for each subset da U)( . Thus, the sample estimates of  the total 

auxiliary variables ka x)( reproduces the total known dxa t)(  at domain level. Thus, for each 

intersection da U)( , if one auxiliary variable coincides with a variable of interest, its estimate 

coincides with the known total.  

 

(d) If the same functional forms fa)(  are used for the estimation of the different R variables, then 

the estimates of the aggregates of the different variables are consistent in the sense they respect 

the relationship existing among the variables at unit level. This may be easily understood by 

considering the estimator in its sample weighted form (see section V.B). This result is essential 

for the construction of synthetic data file (see section V.C). 

 

(e) The estimates are consistent at the different levels of aggregation. The  sum of the estimates 

)(̂hrgent over subsets, hU  , which represent a partition of a DI dU , coincides with the estimate 

defined at the DI level:  


dh drgenhrgen tt )()(
ˆˆ . Therefore, the estimates are consistent at 

population level, so to say that the sum of the domain estimates which represent a partition of the 

population U always reproduces the same estimate of the total referred to the population U. This 

result is relevant if the publication of the survey results is based on a corporate data ware-house. 

 

 

VI. Concluding remarks 
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46. The paper discusses a survey strategy, based both on balanced sampling and on a generalized 

form of regression estimator, which may represent a general and unified approach for defining an 

optimal survey strategy in many different survey contexts characterized by the need of 

disseminating survey estimates of prefixed accuracy for a multiplicity both of  variables and of 

domains of interest which define two or more partitions of the target population; furthermore 

many administrative data sources may be linked to the population register defining population 

subsets with different information patterns. This is the common situation for large scale surveys 

in official statistics which normally produce a huge number of estimates related both to different  

parameters of interest and to highly detailed estimation domains.  

 

47. The main contributions of the paper focus on (i) a clear definition of the informative context; (ii) 

the definition of the optimal inclusion probabilities; (iii) the proposal of an estimation technique 

that fully exploit the existing administrative data sources. The algorithm implements the 

allocation for a general multi-way sampling design in which the standard approach (one-way 

stratification) is a special case. Moreover, the allocation is multi-domain and multivariate: either 

the costs or the sample size is minimized guaranteeing that the sampling variances of the target 

estimates of several variables related to the different planned domains be lower than prefixed 

level of accuracy thresholds. The estimation method has good qualities with respect both to the 

model and to the design; it is defined in a generalized and unified framework which allows to 

easily incorporate different form of the working superpopulation models linking the variables of 

interest with the auxiliary variables deriving from administrative data sources. Furthermore, the 

estimates are calibrated with respect to all the existing administrative data sources and the 

estimates are consistent among both different variables and different levels of aggregation. In 

order to investigate the empirical properties of the proposed sampling strategy, some experiments 

(not illustrated herein, see Falorsi and Righi, 2012) have been carried out on real and simulated 

data sets. All the experiments produced coherent and satisfactory results.  
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Appendices 
 

A. Av of the estimate )(̂drgent   

 

1. Let us derive the model expectation of each of the three terms involved in the squared value of 

(4.4a). We have dkrkadkrkaM uE  )()( 2
)(

2
)(  . Consider now the term )( 2

)(
2

kdrkM gE  . Since 

,0)( )()(  lkajkaM uuE we have 

 

 

)( 2
)(

2
kdrkM gE 

= kjUj djrjajjkk δAδδAδ
122

)(
12 ])1([ 



   
.  

 

 

Finally, let us analyse the third element.  

 

Being ))1((
1 )()(

)(
  


A

a kUk dkrkakrkaM
A

uuE δ = )1(2
)( kdkrkak  δ ,  

then )2( )()( kdrdkrkakM guE  )]1([2 2
)(

1
kdkrkakkk   

δAδ .  

http://www.xbrl.org/
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2. Therefore Taking into account the model expectations (2.2), in our context the AV of the estimates 

)(̂drgent may be defined as:  

 
















      Uk i kdri
i
kkdrUk

k

kdr

sk kdrgen CftAV
2

0 )()(
)(

)( )(),|ˆ( πnδπ 




,         (A1.1a) 

 

where: 
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A
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1
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


,            (A1.1b) 

 

 

being 1)( ka   if Uk a)( and 0)( ka  otherwise. 

 

 

B. Av of the estimates of the superpopulation model parameters 
 

3. On a Census basis, the super-population parameter vector  ra θ)(  
may be estimated on the 

population   obtaining the population parameter, ra θ)( , by solving the following homogeneous 

system of   estimating equations (Godambe and Thompson, 2009; Kim and  Rao, 2011) : 

 

0hθxdθD    Uk rkarakaarkUk rkarara
aa

fy
)()(

)()()()()()()( )),(()( 
                    (A2.1) 

 

 

4. On a sample basis, the estimates may be computed by solving the following system: 

 

 

0hθxdθD    ksk rkarakaarkksk rkarara
aa

fy  /))ˆ,((/)ˆ(ˆ
)()(

)()()()()()()( .                   (A2.2) 

 

 

5. Using the first order terms of the Taylor series linearization technique, it is then possible to 

derive the sandwich sampling variance of the estimates ra θ̂)( : 

 

)ˆ()(ˆ)ˆ(ˆ
)()()()()()()( rarararararara θθGθDθD0  

                    (A2.3) 
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6. For defining the sample design, for all practical purposes the matrix ra G)( may be approximated 

by its population value 
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
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hθx
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
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7. In the design phase, for some functional  forms fa)( , the calculus of the elements of the above 

matrix may necessitate the availability of an estimation, ra θ
~

)( , of ra θ)( . This may be obtained 

from a pilot or from a previous survey. From (A2.3) it is then possible to derive the sandwich 

variance of ra θ̂)(  

 
1

)()()(
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,         (A2.4) 

 

 

where  

 

 

   


sk sk kkrkarkapsk krarap
a

uV
)(

),|/(),|)(ˆ( )()()()( nδπhnδπθDV 
 .        (A2.5) 

 

Therefore, starting from expressions (A2.4) and (A2.5) it is straightforward to derive the 

following  

 

   






sk sk krkarkarask krap
a

uVV
)(

),|(),|ˆ( )()(
1

)()( nδπhGnδπθ
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The sampling variance of the estimate ira ̂)( is the i-th element on the main diagonal of the 

matrix ),|ˆ( )( nδπθ  sk krapV , and therefore 

 

   


sk sk kkirkask kirap
a

zVV
)(

),|/(),|( )( nδπnδπ 
                     (A2.7) 

 

being  

 

irkarkairka uz )()( .                      (A2.8) 

 

in which irka )(  is the squared root of the i-th element of the main diagonal of 

1
)()()(

1
)(

  rarkarkara GhhG . By consequence, the approximated sampling variance of the 

estimate ira ̂)( may be obtained by  expressions (4.4a) except for the substitution of the terms 

dkrka u )( with irka z . The derivation of the anticipated variance is straightforward. 

 


