
WP.43 
ENGLISH ONLY 

 
UNITED NATIONS  
ECONOMIC COMMISSION FOR EUROPE 
 
CONFERENCE OF EUROPEAN STATISTICIANS 
 
Work Session on Statistical Data Editing 
(Ljubljana, Slovenia, 9-11 May 2011) 
 
Topic (vii): New and emerging methods 
 
 

ON IMPUTATION OF BINARY VARIABLES IN REGISTERS 
 

Invited paper 
 

Prepared by Thomas Laitila, Statistics Sweden 
 
 
I. Introduction  
 
1. One strategy for dealing with missing data in surveys is to adjust the data set to fit 
estimators designed for the complete data situation, i.e. imputation is made for missing data. 
There is numerous imputation techniques suggested in the literature (see e.g. Sande, 1982; 
Rubin, 1996; Särndal and Lundström, 2005), classifiable according to which data set is used, if a 
parametric model is used or not, and whether randomization is used for selection of imputed 
value. These imputation techniques have been developed for application to sample surveys, 
where the object is to generalize sample survey estimates to a larger population. 
 
2. For surveys based on registers, random imputation for qualitative variables is suggested 
by Wallgren and Wallgren (2007). Also Fiedler and Schodl (2008) apply random imputation for 
persons occupation and education in a test of a register based census. Multiple imputation in 
registers are used by Abowd et al. (2006) in construction of an infrastructure for statistics 
production.  
 
3. This paper contributes with theoretical results on the properties of register survey 
estimators when registers contain random imputations for missing values. Such results are 
missing in the literature despite its essentiality for appropriate use and interpretation of derived 
statistics. An illustrating problem is the assumption of a correct imputation “model” by which 
random imputations are generated. However, if the model generates random imputation 
estimates which are unbiased, it is possible to calculate the true population value. A major 
concern is therefore the loss of precision in estimates by introducing randomness via imputation. 
Estimators below are named as random or deterministic imputation estimators depending on 
whether random or deterministic imputations are used for missing values. 
 
4. The relative precisions of random imputation estimators are considered in the next 
section, where estimation of population totals are considered. Efficiency of random imputation 
estimators visa vie deterministic imputation estimators is dealt with in Section 3. Section 4 
contains a treatment of estimation problems under random imputation of binary variables. 
Imputation of link variables for aggregation of register units into objects are considered in 
Section 5. A discussion of results is saved for the final section. 
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II. Precision 
 
5. Consider a population U of N  units, each with associated scalar, real valued variables 

ky  and kx  ( Uk∈ ). Interest is in estimation of the unknown population total ∑= U kkyx xyt  

using register information, assuming available register information on ky  and kx  to be without 
errors. Let UU R ⊆  be the set of units with register information on both variables. For UU y ⊆  
and UU x ⊆  register information is not available for ky  and kx , respectively. Units without 
register information on both variables are collected in UU yx ⊆ . These subsets are all disjoint 
and cover the whole population U . 
 
6. For estimation missing values are replaced by imputed values derived from auxiliary 
non-random information. Imputations for ky  in yU  are denoted )(ˆ kk xy  allowing for dependence 
on the known values of kx . Similarly, imputations for kx  in xU  are denoted )(ˆ kk yx . For yxU , 
imputations are denoted as kŷ  and )ˆ(ˆ kk yx , where )ˆ(ˆ kk yx  is generated conditionally on kŷ . The 
imputation based estimator of yxt  is then written as 

∑∑∑∑ +++=
yxxyR U kkkU kkkU kkkU kkyx yxyyxyxxyxyt )ˆ(ˆˆ)(ˆ)(ˆˆ

 
(1) 

 
7. Let z ~ ( )2, zz σμ  denote that z  is a random variable with mean zμ  and 2

zσ . The following 
assumptions are made regarding the imputations made: 

A1: Imputations are independent among units and generated from known models. 
A2: For units in yU , )(ˆ kk xy ~ ( )2)(),( kykkyk xx σμ  

A3: For units in xU , )(ˆ kk yx ~ ( )2)(),( kxkkxk yy σμ  
A4: For units in yxU , kŷ ~ ( )2, ykyk σμ  and kkk yyx ˆ)ˆ(ˆ ~ ( )2)ˆ(),ˆ( kxkkxk yy σμ  

Assumption A1 means that the imputations are generated from the register itself, from auxiliary 
register data, or some combination thereof. No information from probability samples are utilized 
for making imputations. Although non-parametric imputation methods, like nearest neighbor 
imputation, does not involve a formulation of a parametric model, it is still considered as 
drawing a number from a model. Drawing a value at random from a set of values, a set generated 
by forming a group of similar units as in Fiedler and Schodl (2008), implies drawing a number 
from a probability distribution. 
 
8. Under assumptions A1-A4, the estimator yxt̂  has expected value and variance 

( ) ∑∑∑∑ +++=
yxxyR U kU kxkkU kkykU kkyx yyxxxytE λμμ )()(ˆ   

( ) ( ) ( )( )∑∑∑ +++=
yx kkxy U kxkkykxkkyU kxkkU kykkyx yyEyyVyyxxtV 22

ˆˆ
2222 )ˆ(ˆ)ˆ(ˆ)()(ˆ σμσσ  

where ( ))ˆ(ˆˆ kxkkyk yyE
k

μλ = . Rewrite yxt̂  as ∑∑ +=
RR U kkU kkyx xyxyt ~~ˆ , where )(ˆ~

kkk xyy =  and 

kk xx =~ if yUk ∈ , kk yy =~  and )(ˆ~
kkk yxx = if xUk ∈ , kk yy ˆ~ =  and )ˆ(ˆ~

kkk yxx = if yxUk ∈ , and 

yxxyR UUUU ∪∪= . The variance of the estimator can then be expressed as 

( ) ( )∑ −==
RU RRkkyx NNxyVtV 2)(~~ˆ σ  

where ( )∑−−=
RU kkRR xyVNN ~~)( 12σ  and RN  is the number of units in RU . The variance of the 

random imputation estimator is of order RNN − , the number of units with missing values. Since 
the expected value of the estimator is of order N , the coefficient of variation 
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is of order ( ) 2/12/1 1 RfN −− , where Ntyxyx /ˆˆ =μ  and NNf RR /= .  
 
9. Equation (2) shows that the coefficient of variation for the random imputation estimator 
will be small already at moderately large population sizes, unless the mean variance of random 
imputations is extremely large compared with the expected value of the population mean 
estimator Ntyxyx /ˆˆ =μ . 

 
III. Efficiency  
 
10. As an alternative to random imputation, deterministic imputation can be used. Suppose 
the model mean ( ))ˆ(ˆˆ kxkkyk yyE

k
μλ =  and the model means in A2 and A3 are used for 

imputation instead of random draws from the distributions. This deterministic imputation 
estimator equals 

∑∑∑∑ +++=
yxxyR U kU kxkkU kkykU kk

D
yx yyxxxyt λμμ )()(ˆ  (3) 

Table 1: Relative efficiency of yxt̂  compared with D
yxt̂  for different levels of relative bias and 

coefficient of variation. 

 Coefficient of Variation 

Relative bias 0.01 0.05 0.1 0.2 

-0.2 0.998 0.962 0.862 0.610 

-0.1 0.992 0.832 0.552 0.236 

-0.05 0.965 0.526 0.217 0.065 

-0.01 0.505 0.039 0.010 0.003 

0.01 0.495 0.038 0.010 0.002 

0.05 0.958 0.476 0.185 0.054 

0.1 0.988 0.768 0.452 0.171 

0.2 0.996 0.917 0.735 0.410 

 

Comparing this estimator with the expectation of yxt̂  reveals that 

( )yx
D
yx tEt ˆˆ =  

and the biases of the two estimators are the same, i.e. 

∑∑∑ −+−+−==
yxxy U kkkU kkxkkU kkkyk

D
yxyx xyxyyxyxtBiastBias )())(())(()ˆ()ˆ( λμμ

 
Bias of the deterministic estimator can be defined by assigning a degenerate distribution with 

mass one at the point D
yxt̂ . 

11. Since the biases are the same, the relative efficiency, measured in MSE terms, of the 

randomized imputation estimator compared with the deterministic imputation estimator is 



 4 
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)ˆ()ˆ(
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yxyx

yxD
yxyx tBiastV

tBias
tt
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Letting the relative bias be denoted as 
yx

yx

t
tBias )ˆ(

=β
 
the relative efficiency can be rewritten as 

( ) ( )
( )22

2

)1()ˆ(
)1(ˆ;ˆReff

ββ
ββ

++
+

=
yx

D
yxyx tcv

tt   (5) 

The relative efficiency decreases when the relative bias decreases, in absolute terms, and when 
the coefficient of variation increases. Expression (5) is generic in the sense it applies to all 
comparisons of a random estimator to its mean. 
 
12. Table 1 presents calculated values of (5) for a few combinations of relative bias and 
coefficient of variation values. From the table it is seen that the loss in efficiency is substantial if 
the relative bias is small, e.g. around ±1%. A pattern in the table indicates that the loss in 
efficiency is large if the relative bias, in absolute terms, is smaller than the coefficient of 
variation. 
 

13. This section is closed by a short note on the construction of confidence intervals (CI) 

based on the random imputation estimator yxt̂ . The estimator has expected value D
yxt̂ , which is a 

value which can be calculated. Constructing a CI of the standard form )ˆ(ˆ96.1ˆ
yxyx tVt ±  will 

produce a CI for D
yxt̂ , not for the unknown population total yxt . Thus, the source of uncertainty in 

the register survey estimator is the bias introduced by imputation, not variance, and a standard 

CI gives no information on the uncertainty of a register survey estimate. 

 

IV. Imputation for a binary variable  
 
14. Consider the case where ky  is a binary variable, { }1,0∈ky , e.g. a domain indicator, and 

where kx  is a bounded positive variable, { }Mxk ,0∈ , ∞<M . Random imputations for ky  can 

be interpreted as being made from Bernoulli distributions and assumptions A2 and A4 are 

replaced by A2*: For units in yU , )(ˆ kk xy ~ ( ))( kyk xbern μ , 0< )( kyk xμ <1 and A4*: For units in 

yxU , kŷ ~ ( )ykbern μ , kkk yyx ˆ)ˆ(ˆ ~ ( )2)ˆ(),ˆ( kxkkxk yy σμ , 0< ykμ <1. The expected values for the units 

in yxU  are )1(xkykk μμλ = , whereby the expected value of the random imputation estimator is 

( ) ( )∑∑∑∑ +++=
yxxyR U kykU kkU kkykU kkyx zEzEyzxzyMtE ))1(ˆ())1(ˆ()(ˆ μμ  

where Mxz kk =  and Mxz kk )1(ˆ)1(ˆ =  are both bounded to the unit interval. The variance is 

( ) ( )∑∑∑ +−++−=
yxxy U xkykxkykykU xkkU kkykkykyx yxxxtV 2222 )1()1()1()1())(1)((ˆ σμμμμσμμ
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Since 0< ))(1( kyk xμ− <1 and 0< )1( ykμ− <1 the variance is bounded by 

( ) ( )∑∑∑ ++<
yxxy U kykU kkU kkykyx zEzVyzxMtV ))1(ˆ())1(ˆ()(ˆ 222 μμ  

Now, kk zz ≤2 , ))1(ˆ())1(ˆ( kk zEzV ≤  and ))1(ˆ())1(ˆ( 2
kk zEzE ≤  whereby  

( ) D
RyxU kykU kkU kkykyx tMzEzEyzxMtV

yxxy
⋅=++< ∑∑∑  ))1(ˆ())1(ˆ()()ˆ( 2 μμ  

where ( )∑∑∑ ++=
yxxy U xkykU xkkU kkyk

D
Ryx yxxt )1()1()( μμμμ  is the sum of imputed values kk xy ~~ .  

15. Defining ∑=
RU kkyxR xyt , the total of the observed values kk xy , the coefficient of 

variation can be bounded as 

2222 )()(
)ˆ(

)(
)ˆ(

)ˆ(
)ˆ(
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Letting RyxRyxR Ntt = , )( R
D

Ryx
D

Ryx NNtt −= , and RR ff −=1 , this inequality can be rewritten as 

)(
1)ˆ( D

RyxRyxRR

D
RyxR

yx tftf

tM

N
ftcv

+

⋅−
<  

Unless M  is extremely large compared with the expected value of the population mean 

estimator Ntyx /ˆ , the coefficient of variation will be small for moderately large sample sizes. 

16. If the mean of imputed values equals the mean of the observed values, i.e. yxR
D

Ryx tt =  then 

yxR

R
yx t

M
N

ftcv −
<

1)ˆ(   (6) 

Inequality (6) is illustrated with the following two examples: 

Example 1: In a survey of establishments, let ky  be an indicator for a domain, e.g. an industry 

sector, and let kx  be an indicator of the size category of an establishments whereby 

M=1. Let the population be of size N=10000 and suppose a register contains 

observations on both ky  and kx  for 7500 of the units in the population, i.e. 

75.0=Rf . Suppose 400 of the 7500 units with complete observations in the 

register are included in the domain and of those 400, 20 units belong to the size 

category of interest. Then yxRt =20/7500 and )ˆ( yxtcv  < 0.0968. 

Example 2: In a survey of household income, let ky  be a domain indicator and let kx  denote 

household income. Suppose the population contains 50 000 households and 

auxiliary information restricts household income to be less than 2 million SEK, i.e. 

M = 2000000. Suppose register information on both ky  and kx  can be obtained for 
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80% of the households in the population and that yxRt  = 150000. Then )ˆ( yxtcv  < 

0.0073. If M is increased 100 times to 200 million SEK, the bound on the 

coefficient of variation increases to 0.073. 

 

V. Imputation for link variables  
 
17. Sometimes the register contains units which can be grouped into larger units, here called 
objects, e.g. persons can be grouped into households or establishments can be grouped into 
enterprises. For such an aggregation into objects, the register must contain link variables 
indicating which units belong to which objects. Here the imputations of such link variables are 
considered.  
 
18. The population U  of N  units is assumed to be grouped into a population V  of B  
objects. Let hv  denote the set of units in U  included in object Vh∈ . For each unit Uk∈  there 
is an indicator variable hky  which equals one if the unit belongs to object Vh∈ , hky  is zero 
otherwise. For some units the link variable is missing and replaced by imputations hkŷ . Let ha  
denote a vector of variables with characteristics of the object which is not a function of the 
characteristics of the units, e.g. location and living space of a household. Similarly, let kx  denote 
a vector of characteristics of unit k, e.g. income. Both ha  and kx  are assumed to be known via 
register information. 
 

19. Let hY  denote a vector containing the indicators hky  for all Uk∈ . Also let X  denote a 

matrix containing the vectors kx , Uk∈ . A household characteristic hg  can then be expressed as 

a function ),,( hhh aXYgg = . For domain statistics, introduce a domain indicator ))((1 hh vqI =  

equaling one if the restriction )( hvq  is satisfied by household h and equaling zero otherwise. The 

estimation problem considered here is the estimation of the domain mean 

∑
∑==

V h

V hh

I

I
Ig I

gI
B
tμ  

using random imputations of some of the link variables hky .  

 

20. Let hŶ  denote a vector with some of the elements hky  imputed. The household 

characteristic is then defined by the imputations and denoted as ),,ˆ(ˆ hhh aXYgg = . Similarly the 

household domain indicator ))((1 hh vqI =  may be defined by imputations whereby it is denoted 

as ))ˆ((1ˆ
hh vqI = . The random imputation estimator considered is 

∑∑
∑∑

+

+
==

RR

RR

V hV h

V hhV hh

I

Ig
Ig II

gIgI

t
t

ˆ
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ˆ
ˆ

μ̂      (7) 
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where RV  contain objects with complete information on links to the units in the population U 

while RV  contain objects with one or several missing link variables hky . 

Using the Hartley-Ross identity, the expression  
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is obtained for the coefficient of variation of the estimator (7). If 0)ˆ,ˆ( ≥IIg ttCov , a result 

obtained if e.g. Igt̂  is positive regression dependent on It̂  (Esary et al, 1967), a Taylor expansion 

gives the bound 

( )222 )ˆ()ˆ()ˆ( IIgIg tcvtcvcv +≤ κμ      (8) 

 

21. Depending on the definitions ),,( hhh aXYgg =  and ))((1 hh vqI = , the estimators Igt̂  and 

It̂  can be made up of sums of dependent variables whereby the results of earlier sections are not 

directly applicable. To bound the rhs of (8), a result on negative association (Kumar and 

Proschan, 1983) is utilized. Let hŶ  denote hY  with randomly imputed values and let )ˆ(ˆ hhh Yψψ =  

be a scalar function defined on the random vector hŶ , e.g. hhh gI ˆˆˆ =ψ . The following result is 

used below. 

 

Result 5.1: If hψ̂  and 'ˆhψ , RVhh ∈≠ ' , are both non-decreasing (non-increasing) functions of 

hŶ , then .0)ˆ,ˆ( ' ≤hhCov ψψ  

Proof: For a given object h, imputations in hŶ  are independent. For a given unit k the 

imputations Bkk yy ˆ,...,ˆ1  follows a one trial multinomial distributions. The set of 

random variables { }RRhkR UkVhyY ∈∈= ,:ˆˆ  is then negatively associated. The 

functions hψ̂  and 'ˆhψ , RVhh ∈≠ '  are defined on disjoint subsets of RŶ  whereby 

the result follows from Property P5 in Kumar and Proschan (1983) when the 

functions are non-decreasing. Since )ˆ,ˆ()ˆ,ˆ( '' hhhh CovCov ψψψψ =−−  the same result 

is obtained for non-increasing functions.□ 

 

Result 5.1. implies that ∑≤
RV hhIg gIVtV )ˆˆ()ˆ(  and ∑≤

RV hI IVtV )ˆ()ˆ(  if hhgI  and hI  are both 

positive (negative) functions of hkŷ  for all Uk ∈ . These inequalities in combination with the 

results in Section 4 yields the bound 
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where VRf  is the proportion of objects in the set RV , G is an upper limit for hg , IgRt  and IRt  are 

averages of observed values hhgI  and hI , respectively, and D
RIgt  and D

RIt  are means of expected 

values of hhgI ˆˆ  and hÎ , respectively. If D
IgRIgR tt =  and D

IRIR tt =  the inequality simplifies to 

( ) ( )

2/1

22
2/1 11)ˆ(
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VI. Discussion  
 
22. Random imputation is a practical way for producing a “full” register which later can be 
used for different purposes. The system of register and sample survey data files described in 
Abowd et al. (2006) provide with an illustrating example. When it comes to estimation of 
parameters defined as sums of population unit values using register data, the theoretical results 
partly give and partly do not give support to the use of random imputation. In terms of relative 
precision, already at moderate population sizes, the variance introduced by random imputation is 
small compared to the population total estimate. However, for a given random imputation 
technique, there is a corresponding deterministic imputation technique where the expected 
values of the specified distributions are imputed instead of random draws. The loss in efficiency 
compared with this deterministic imputation estimator can be substantial if random imputation is 
used. Results show that the smaller bias in the deterministic imputation estimator, the larger the 
loss in efficiency for the random imputation estimator. 
 
23. The use of random imputation for constructing a full register data matrix can also be 
deceptive. The variance introduced is negligible in relative terms for moderately large 
population sizes, a consequence of the laws of large numbers. For small populations, the 
variance can be of a much larger magnitude. Such cases can occur in estimation of parameters in 
small domains, an estimation problem the register manager may not be in control over as the 
register is constructed for general application. 
 
24. Another topic considered in the paper is imputation of link variables used for aggregation 
of population units to larger objects. Here the characteristic of the object considered is general 
and may constitute sums of object characteristics defined by non-linear functions of the link 
variables, e.g. per person household living space. For this estimation problem, the picture is a 
little bit different regarding the precision of the random imputation estimator. In terms of relative 
precision, the bound derived on the coefficient of variation shows on small coefficient of 
variations for moderately large populations. Again this result may not hold for small domains. 
 
25. Regarding relative efficiency, the bias of the deterministic imputation estimator is 
generally not the same as the bias of the random imputation estimator. In the case when the 
model underlying the random imputations is correct, the random imputation estimator gives 
unbiased estimates. This is not generally obtained if imputations are deterministically made 
using the expected values instead of random draws. However, imputations of link variables 
imply imputations of object characteristics. A way of performing approximate deterministic 
imputation can be achieved by repeated random imputations of link variables, as in multiple 
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imputation, and imputing averages of the corresponding repeated household characteristics. The 
relative efficiency of the random imputation estimator in relation to this deterministic imputation 
estimator is expected to be similar to the results in Section 3. 
 
26. In summary, results presented indicate that random imputation should be avoided for 
deriving full registers to be used for general applications. There is a loss in efficiency which can 
be substantial if the imputation method yields small bias, and if the population is small the 
random imputation estimator may be with both low efficiency and low relative precision. 
Imputations using the expected values in the models for random imputations are a better 
alternative. For continuous and binary variables such an imputation method causes no practical 
problems. For categorical variables in general, this imputation method causes a data storage 
problem. The expected value, i.e. the probability, for each category level must be stored in the 
register. On the other hand, the storage of expected values for category variables, e.g. link 
variables, increases the information available for sound statistical inference. 
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