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I. Introduction  
 
1. The goal of automatic editing is to accurately detect and correct errors and missing values in a 
data file in a fully automated manner, i.e. without human intervention. Provided that automatic editing 
leads to data of sufficient quality, it can be used as a partial alternative to manual editing, and thereby be 
an important tool for increasing the efficiency of a statistical process. In practice, automatic editing 
implies that the data is made consistent with respect to a set of constraints (edits). Examples of edits are: 
 Profit = Total Turnover – Total Costs,       (1) 
and 
 Profit ≤ 0.6 × Total Turnover.        (2) 
Note that there is a conceptual difference between these two edits. Edit (1) is an example of an edit that 
has to hold by definition, so that every combination of values that fails this edit necessarily contains an 
error. Such edits are commonly known as hard edits, fatal edits, or logical edits. Edit (2) is an example of 
an edit that identifies combinations of values that are implausible, but not necessarily incorrect. In this 
example, records for which Profit is larger than 60% of Total Turnover are considered suspicious. 
However, it is conceivable that such a combination of values is occasionally correct. Edits of this type, 
which do not identify errors with certainty, are known as soft edits, or query edits. 
 
2. Current algorithms for automatic editing used by NSIs – including the error localisation module 
of SLICE at Statistics Netherlands – are often based on the well-known Fellegi-Holt paradigm. A 
limitation of these algorithms is that they necessarily treat all edits as hard edits. That is to say, a failed 
edit is always attributed to an error in the data. In manual editing, however, subject-matter specialists also 
make extensive use of soft edits. During automatic editing, these soft edits are either not used at all, or 
else interpreted as hard edits. Both solutions are unsatisfactory, because in the first case some errors are 
missed during automatic editing, and in the second case some correct values are wrongfully identified as 
erroneous. In fact, the inability of automatic editing methods to handle soft edits partly explains why 
many differences between manually edited and automatically edited data are found in practice. 
 
3. The object of this paper is to present a new formulation of the automatic error localisation 
problem, which can distinguish between hard edits and soft edits. In addition, it is shown how the error 
localisation algorithm of SLICE can be adapted to solve this new error localisation problem. The 
remainder of this paper is organised as follows. Section II provides a brief summary of methods for 
solving the error localisation problem based on the Fellegi-Holt paradigm. In Section III, a distinction 
between hard and soft edits is introduced and the theory is extended to this situation, leading to a new 
error localisation algorithm. In Section IV, the new algorithm is illustrated by means of a small example. 
A brief discussion in Section V concludes the paper. 
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II. Background: the Error Localisation Problem and How to Solve It 
 
4. For the sake of brevity, it is assumed throughout this paper that the data consists of real-valued 
numerical variables ),,( 1 pxx K , and that each edit kψ  can be written as a linear inequality: 

 0: 11 ≥+++ kpkpk
k bxaxa Lψ .       (3) 

Suppose that a record ),,( 00
1 pxx K  of unedited data is given, possibly containing both errors and missing 

values. It is straightforward to determine which edits are failed and which are satisfied. Given that at least 
one edit is failed, the problem of finding the erroneous values that are causing the edit failures (i.e. the 
error localisation problem) is much more difficult. 
 
5. In order to solve the error localisation problem automatically, a formal strategy for finding the 
erroneous variables has to be adopted. According to the famous (generalised) Fellegi-Holt paradigm 
(Fellegi and Holt, 1976), one should find a subset of the variables which (a) can be imputed such that the 
adjusted record ),,( 1 pxx K  satisfies all edits, and (b) minimises the following target function: 

 ∑
=

≠=
p

j
jjjFH xxIwD

1

0 )( ,         (4) 

where jw  denotes the confidence weight of variable jx , and (.)I  equals 1 if its argument is true, and 0 
otherwise. The confidence weights are an a priori measure of trust in the unedited values of different 
variables: a variable with a high confidence weight supposedly contains relatively few errors, a variable 
with a low weight supposedly contains relatively many. The confidence weights are usually chosen by 
subject-matter experts. The original Fellegi-Holt paradigm is recovered by taking all confidence weights 
equal (for instance equal to one), so that the number of imputed variables is minimised. 
 
6. Clearly, a subset of variables can only be a solution to the error localisation problem if every 
failed edit involves at least one of these variables, i.e. if the failed edits are ‘covered’ by the subset of 
variables. However, this condition is not sufficient. Fellegi and Holt (1976) showed that, in order to 
determine whether a combination of variables can be imputed to satisfy all edits, it is necessary to derive 
so-called essentially new implied edits from the original set of edits. 
 
7. The importance of these implied edits can be seen in the following small example. Suppose that a 
record of three variables has to satisfy the two inequality edits 21 xx ≥  and 32 xx ≥ . The unedited record 

)5,8,4(),,( 0
3

0
2

0
1 =xxx  fails the first edit and satisfies the second edit. Since 2x  is involved in the failed 

edit, one might try to solve the edit failure by changing this variable. However, this is impossible without 
causing the second edit to become failed, because the imputed value has to satisfy 42 ≤x  and 52 ≥x . 
There is in fact an essentially new implied edit that can be derived from the two original edits: 31 xx ≥ . 
The implied edit is failed by the original record and 2x  is not involved in this edit. This shows that only 
changing the value of 2x  is not a solution to the error localisation problem for this record. 
 
8. For numerical edits of the form (3), essentially new implied edits are derived by applying a 
technique called Fourier-Motzkin elimination, which tries to eliminate a chosen variable from all pairs of 
edits that involve this variable. Suppose that gx  is involved in sψ  and tψ , and suppose that 0<tgsgaa , 

i.e. the coefficients of gx  in the two edits have opposite signs. If it does not hold that 0<tgsgaa , then gx  

cannot be eliminated from sψ  and tψ . It can be assumed without loss of generality that 0<sga  and 

0>tga . This means that sψ  can be written as an upper bound on the value of gx , given the values of the 
other variables: 

 )(1
11,11,11 spspggsggss

sg
g bxaxaxaxa

a
x ++++++

−
≤ ++−− LL .    (5) 

In the same way, tψ  can be written as a lower bound on gx : 



 3

 )(1
11,11,11 tptpggtggtt

tg
g bxaxaxaxa

a
x ++++++

−
≥ ++−− LL .    (6) 

Combining the two bounds, in the spirit of the example from the previous paragraph, leads to a new edit: 
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which can be written in the general form (3) as 
 0: 11 ≥+++ ∗∗∗∗ bxaxa ppLψ ,        (7) 

with tjsgsjtgj aaaaa −=∗  and tsgstg babab −=∗ . Note that 0=∗
ga , so gx  is not involved in the implied edit. 

 
9. In the original method of Fellegi and Holt, the above elimination procedure is repeatedly applied 
to the original set of edits until no more essentially new implied edits can be derived. Together, the 
original edits and the essentially new edits form the so-called complete set of edits. Fellegi and Holt 
(1976) prove that a subset of variables that covers all failed edits from the complete set is a feasible 
solution to the error localisation problem. Thus, once a complete set of edits has been obtained, the error 
localisation problem can be solved in a straightforward manner, for any record, by finding the subset of 
variables that minimises FHD  among all subsets that cover the failed edits in the complete set of edits. 
However, the complete set of edits can be extremely large in practice, which means that the original 
method of Fellegi and Holt is not always computationally feasible. 
 
10. De Waal and Quere (2003) describe a different, but related error localisation method, which 
makes use of implied edits without deriving the complete set of edits. A branch-and-bound algorithm is 
run for each record separately. The algorithm can be represented as a binary tree, where a different set of 
edits is associated with each node. At the root node of the tree, the current set of edits is the original set of 
edits, say 0Ψ . In each node, a variable is selected that has not been selected in any of its predecessor 
nodes, and two branches are constructed. In the first branch, it is assumed that the original value of the 
selected variable is erroneous, and the variable is eliminated from the current set of edits, say qΨ , by 
means of Fourier-Motzkin elimination. This generates a new set of edits 1+Ψq , which consists of the 
essentially new implied edits obtained by eliminating the selected variable and the edits from qΨ  that do 
not involve the selected variable. In the second branch, it is assumed that the original value of the 
selected variable is correct. Here, a new set of edits 1+Ψq  is generated from qΨ  by fixing the selected 
variable to its original value in all edits that involve this variable. In both cases the variable has been 
treated, and it is not involved in the current set of edits anymore. 
 
11. Once all variables have been treated (i.e. either eliminated or fixed), the algorithm reaches a 
terminal node of the tree. The associated set of edits in a terminal node does not contain any variables, 
hence it must either be empty or consist of elementary relations such as 01≥  and 10 ≥ . As the latter 
example shows, some of these elementary relations may be self-contradicting. De Waal and Quere (2003) 
show that the feasible solutions to the error localisation problem correspond with terminal nodes that 
contain no self-contradicting relations. If a terminal node contains no self-contradicting relations, then the 
variables that have been eliminated to reach this node can be imputed to satisfy the original set of edits. 
This property follows by a repeated application of the following theorem. 
 
Theorem 1. Consider a node in the binary tree with an associated set of edits qΨ , and let qT  be the 
index set of variables that have not been treated yet. Suppose that gx  is either eliminated or fixed to 
obtain the next node, with the associated set of edits 1+Ψq , and define }{\:1 gTT qq =+ . Then there exist 
values ju  for the variables with 1+∈ qTj  that satisfy all edits in 1+Ψq , if and only if there also exists a 
value gu  such that the values ju  for qTj∈  satisfy all edits in qΨ . 
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See De Waal (2003, pp. 133-135) or De Waal et al. (2011, pp. 135-138) for a proof. 
 
12. Since the number of terminal nodes in the binary tree increases exponentially with the number of 
variables in the data, it is important to reduce the amount of computational work as much as possible by 
pruning the tree. Branches can be pruned as soon as it becomes clear that they either do not lead to 
feasible solutions, or only to solutions for which the value of FHD  is higher than the best solution found 
so far. Another way to reduce the size of the tree is to start by eliminating the variables with missing 
values, since these cannot be fixed to their original value. Variables with missing values certainly have to 
be imputed, so they occur in every feasible solution to the error localisation problem. 
 
13. The branch-and-bound algorithm of De Waal and Quere (2003) has been implemented in the 
software package SLICE at Statistics Netherlands. It is currently used for the automatic editing of the 
Dutch structural business statistics. Other examples of software packages for automatic editing based on 
the Fellegi-Holt paradigm are: GEIS and its successor Banff (Banff Support Team, 2003), SPEER 
(Winkler and Draper, 1997), and AGGIES (Todaro, 1999). While the algorithms of these software 
packages differ in some respects, they all try to solve the error localisation problem by finding a minimal 
set of variables that can be imputed to satisfy all specified edits simultaneously. This means that they 
necessarily treat all edits as hard edits. 
 
III. Using Soft Edits in Automatic Error Localisation 
 
A. A Short Theory of Edit Failures 
 
14. A fundamental property of the Fourier-Motzkin elimination technique is the fact that the values 
of pgg xxxx ,,,,, 111 KK +−  satisfy the implied edit (7), if and only if there exists a value for gx  which, 
together with the values of the other variables, satisfies both edits (5) and (6). In fact, this feature forms 
the basis for the proof of Theorem 1. Looking at this equivalence from another point of view, if the 
values of pgg xxxx ,,,,, 111 KK +−  do not satisfy the implied edit (7), then it holds that 
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and hence it is impossible to satisfy edits (5) and (6) simultaneously. However, it is still possible in this 
case to find a value for gx  that satisfies either edit (5) or edit (6). While this observation in itself is 
almost trivial, it forms the basis for the proof of Theorem 2 below. 
 
15. Suppose that, at some point during an execution of the branch-and-bound algorithm of De Waal 
and Quere (2003), q  variables have been treated (i.e. either eliminated from the original edits or fixed). 
The current set of edits is denoted by qΨ , and the edits in this set are denoted by k

qψ . It is possible to 

associate with each current edit k
qψ  a set k

qB , which contains the indices of all the original edits that were 

used, either directly or indirectly, to derive this edit. In fact, k
qB  is defined recursively as follows: 

• For an original edit k
0ψ , define }{:0 kB k = . 

• For an edit k
qψ  that is derived from another edit l

q 1−ψ  either by fixing a variable to its original 

value or by simply copying the edit, define l
q

k
q BB 1: −= . 

• For an edit k
qψ  that is derived by eliminating a variable from two other edits s

q 1−ψ  and t
q 1−ψ , 

define t
q

s
q

k
q BBB 11: −− ∪= . 
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16. A set B  is called a representing set of a collection of index sets rk
q

k
q BB ,,1 K , if it contains at least 

one element from each of rk
q

k
q BB ,,1 K  (see, e.g., Mirsky, 1971, p. 25). Note that in this case the elements 

of B  refer to a subset of the original edits. The following theorem can now be proved. 
 
Theorem 2. Suppose that the current set of edits can be partitioned as )2()1(

qqq Ψ∪Ψ=Ψ , where the edits 

from )1(
qΨ  are satisfied by the original values of the variables that have not been treated, and the edits in 

)2(
qΨ  are failed by these values. Also, suppose that B  is a representing set of the index sets k

qB  for all 
)2(

q
k
q Ψ∈ψ . Then there exist values for the eliminated variables which, together with the original values 

of the other variables, satisfy all the original edits except those in B . 
 
The proof of Theorem 2 is given in the appendix to this paper, because it is somewhat technical. 
 
17. The importance of this theorem is that it enables one to evaluate, at each stage of the branch-and-
bound algorithm, which combinations of the original edits could be satisfied by imputing the variables 
that have been eliminated so far, and also which edits would remain failed. If it is possible to impute the 
eliminated variables such that only soft edits remain failed, but the hard edits are all satisfied, then 
imputing these variables can be considered as a feasible solution to the error localisation problem. This 
idea will be elaborated in the next subsection. 
 
B. A New Error Localisation Problem 
 
18. It is now assumed that the original set of edits 0Ψ  has been partitioned into two disjoint subsets: 

SH 000 Ψ∪Ψ=Ψ . The edits H
k
H 00 Ψ∈ψ  are hard edits, the edits S

k
S 00 Ψ∈ψ  are soft edits. A subset of the 

variables is considered as a feasible solution to the error localisation problem if it can be imputed to 
satisfy all the edits in H0Ψ . Since the theory from the previous subsection can be used to determine 
which edits from S0Ψ  remain failed (if any), it is possible to use information about the soft edit failures 
in choosing the optimal solution to the error localisation problem. This can be done by adding a second 
term to target function (4): 
 softFH DDD += ,         (8) 
where softD  represents the costs that are associated with failed soft edits. 
 
19. Instead of minimising the (weighted) number of imputed variables that must be imputed to 
satisfy all the edits, the objective now becomes to find the subset of variables that minimises D  among 
those subsets that can be imputed to satisfy all hard edits. Depending on the choice of the confidence 
weights and of softD , it may happen that the optimal solution to the new error localisation problem 
imputes more variables than is strictly needed to satisfy all hard edits, provided that this leads to a smaller 
value of D , because some of the failed soft edits also become satisfied. 
 
20. Probably the easiest way to define the costs of soft edit failures, is to associate a fixed failure 
weight ks  with each soft edit, and to define softD  as the sum of the failure weights of the soft edits that 
remain failed: 

 ∑
=

=
SK

k

k
Sksoft IsD

1
0 )failed is (ψ ,        (9) 

where SK  denotes the number of soft edits that have been specified. The failure weights can be chosen 
by subject-matter experts, analogously to the confidence weights in the generalised Fellegi-Holt 
paradigm. That is to say, the failure weight expresses the importance that is attached to a soft edit from a 
subject-matter related point of view. 
 
21. A drawback of using fixed failure weights is that they do not take the size of the edit failures into 
account: every record that fails a particular soft edit k

S0ψ  receives the same contribution to softD , namely 
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ks . This differs from the way soft edits are interpreted by human editors during interactive editing. There, 
a failed soft edit points to a combination of values that is suspicious, and the degree of suspicion depends 
heavily on the size of the edit failure: a small failure is ignored more easily than a large failure. This point 
will be taken up in Section V. 
 
C. Solving the New Error Localisation Problem 
 
22. The new error localisation problem, with a distinction between hard and soft edits, can be solved 
by a modified version of the branch-and-bound algorithm of De Waal and Quere (2003). In the root node 
of the binary tree, the original edits are partitioned into a set of hard edits, H0Ψ , and a set of soft edits, 

S0Ψ . To each soft edit S
k
S 00 Ψ∈ψ  there is associated an index set }{:0 kB k

S = . The number of treated 
variables is initially 0:=q . 
 
23. If the current node of the binary tree is not a terminal node, then an untreated variable is selected, 
say gx . Two new branches are generated. In the first branch, gx  is eliminated from the current set of 
edits qSqHq Ψ∪Ψ=Ψ  by means of Fourier-Motzkin elimination, and in the second branch, gx  is fixed to 
its original value. Both procedures are carried out largely the same way as in the original algorithm. The 
main difference is that the new algorithm distinguishes between hard and soft implied edits. 
 
24. In the branch where gx  is fixed to its original value, a new set of edits SqHqq ,1,11 +++ Ψ∪Ψ=Ψ  is 
obtained, where Hq ,1+Ψ  is derived from qHΨ , and Sq ,1+Ψ  is derived from qSΨ . In addition, define 

l
qS

k
Sq BB =+ :,1  for an edit k

Sq ,1+ψ  that is generated from l
qSψ  in this way. 

 
25. In the branch where gx  is eliminated from the edits, the new set of hard edits Hq ,1+Ψ  consists of 
all edits from qHΨ  that do not involve gx , plus all implied edits that are obtained by eliminating gx  from 
a combination of only hard edits. The new set of soft edits Sq ,1+Ψ  contains all the other edits, i.e. 

• all edits qS
l
qS Ψ∈ψ  that do not involve gx : define l

qS
k

Sq BB =+ :,1  for an edit k
Sq ,1+ψ  that is generated 

in this way; 
• all implied edits that are obtained from a combination of only soft edits, say s

qSψ  and t
qSψ : define 

t
qS

s
qS

k
Sq BBB ∪=+ :,1  for an edit k

Sq ,1+ψ  that is generated in this way; 

• all implied edits that are obtained from a combination of a soft edit and a hard edit, say s
qSψ  and 

t
qHψ : define s

qS
k

Sq BB =+ :,1  for an edit k
Sq ,1+ψ  that is generated in this way. 

 
26. After generating the new set of edits 1+Ψq , it is checked whether any of these edits are failed by 
the original values of the variables that have not been treated yet. In the new algorithm, three possible 
situations may arise here. First of all, if at least one edit in Hq ,1+Ψ  remains failed, then the variables that 
have been eliminated so far cannot be imputed to satisfy all the original hard edits. In this case, define 

1: += qq  and continue the generation of branches from the current node. 
 
27. A second possibility is that none of the edits in 1+Ψq  remain failed. This means that the variables 
that have been eliminated so far can be imputed to satisfy all the original edits, both hard and soft. This 
means that a feasible solution to the error localisation problem has been found. The value of the target 
function equals FHDD = , i.e. the sum of the confidence weights of the eliminated variables. If this value 
is smaller than (or equal to) the value minD  of the best solution found so far, then the new solution is kept. 
Otherwise, it is discarded. Either way, it is not useful to continue the algorithm from the current node, 
because the value of the target function can only increase if more variables are eliminated. 
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28. The third and final possibility is that the edits in Hq ,1+Ψ  are satisfied, but at least one of the edits 
in Sq ,1+Ψ  remains failed. In this case, the variables that have been eliminated so far can be imputed to 
satisfy the original hard edits, but not all the original soft edits. Hence a feasible solution to the error 
localisation problem has been found, but the contribution of softD  to the target function is non-zero. 
 
29. According to Theorem 2, it is possible to satisfy all original soft edits except those in a 
representing set B  of the sets k

SqB ,1+  for the failed edits from Sq ,1+Ψ . Since this property is shared by all 
representing sets, it is possible to choose B  in such a way that softD  is minimised. If expression (9) is 
used for softD , then the optimal choice of B  can be found by solving a minimisation problem: 

 

Sk

Sq
l

Sq
Bk

k

K

k
kk

Kkz

z

zs

l
Sq

S

,,1 allfor  },1,0{

  violatedallfor  ,1

such that ,min

,1,1

1

,1

K=∈

Ψ∈≥ ++
∈

=

∑

∑

+

ψ        (10) 

This problem can be solved by applying a (much simpler) branch-and-bound algorithm to explore all 
possible choices of 

SKzz ,,1 K . The associated minimal representing set is }1|{ == kzkB . Moreover, the 
contribution of softD  to D  equals the minimal value of problem (10). 
 
30. Like in the previous case, the value of D  is compared to that of the best solution found so far. If 

minDD > , then the current solution is discarded. Regardless of this, however, it is meaningful to continue 
the algorithm from the current node, because eliminating more variables may lead to a solution with a 
lower value of D : an increase in FHD  may be compensated by a decrease in softD . Therefore, define 

1: += qq  and continue the generation of branches from the current node. 
 
31. The correctness of this branch-and-bound algorithm follows from the theory of Section III.A. 
Note that the index sets k

qB  from Theorem 2 only have to be calculated for the soft edits, because a subset 
of the variables is never considered as a feasible solution to the error localisation problem when at least 
one of the hard edits remains failed. This means that, in every application of Theorem 2, all implied edits 
that are derived from hard edits must be contained in )1(

qΨ . Also note that the new algorithm reduces to 
the original algorithm of De Waal and Quere (2003) if no soft edits have been specified. 
 
IV. Example 
 
32. To illustrate the new branch-and-bound algorithm, it is applied to a very small example. In this 
example, which is based on an example from De Waal (2003), there are four numerical variables: total 
turnover (T ), profit ( P ), total costs ( C ), and total number of employees ( N ). These variables have to 
satisfy six hard edits and two soft edits: 

 

})2{(01.0:
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2
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Note that the first two hard edits together are equivalent to PCT =− . The unedited record 
)5,60000,40000,100(),,,( 0000 =NCPT  is inconsistent, because it fails the first hard edit and the first soft 
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edit. The confidence weights of the variables are )3,1,1,2(),,,( =NCPT wwww , and the failure weights of 
the two soft edits are 221 == ss . 
 
33. Suppose that the variable P  is selected first. In the branch where P  is eliminated from the 
original edits, the following set of new edits is obtained: 
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For instance, 2
1Sψ  is obtained by eliminating P  from 1

0Hψ  and 2
0Sψ . The last soft edit 3

1Sψ  is in fact 
equivalent to 1

1Hψ , which means that it can be discarded. 
 
34. If the original values )5,60000,100(),,( 000 =NCT  are used to evaluate the current set of edits, it 
is seen that the hard edits are all satisfied. This shows that identifying only the original value of P  as 
erroneous is a feasible solution to the error localisation problem. However, 2

1Sψ  remains failed. Since 
}2{=B  is a representing set of 2

1SB , Theorem 2 states that it is possible to impute a value for P  which 
satisfies all the original edits except for 2

0Sψ . This is in fact the minimal representing set according to 
problem (10). The value of target function (8) therefore equals 3212 =+=+=+= swDDD PsoftFH . 
 
35. Possibly, the current solution can be improved by eliminating another variable, say C , from the 
current set of edits. This yields: 
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The two new soft edits are both redundant, because they are equivalent to hard edit 1
2Hψ . In fact, the 

original values )5,100(),( 00 =NT  satisfy all the new edits. This means that the variables P  and C  can 
be imputed to satisfy all the original edits, including the soft edits. The value of target function (8) for this 
solution to the error localisation problem equals 211 =+=+== CPFH wwDD . This is an improvement 
compared to the previous solution. Moreover, this solution cannot be improved further by eliminating 
more variables in the current branch of the binary tree. 
 
36. So far, one branch of the binary tree has been considered. If the algorithm is continued by 
exploring all the other branches, it turns out that the best solution found so far (impute P  and C ) is also 
the optimal solution. A possible way to impute the record is: )5,60,40,100(),,,( =NCPT . This solution 
has the nice interpretation that the original values of P  and C  were overstated by a factor of 1,000. 
 
37. It is of interest to note that, if the two soft edits are not used in this example, then the first 
solution found above, i.e. impute only P , is the optimal solution to the error localisation problem for this 
record. In this case, the record has to be imputed as: )5,60000,59900,100(),,,( −=NCPT . This illustrates 
that, in this example at least, the soft edits are important for finding imputations that are not just 
consistent with the hard edits, but also plausible. 
 
V. Discussion 
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38. In this paper, a new formulation of the error localisation problem has been proposed, which takes 
the distinction between hard edits and soft edits into account. Also, it was shown how the branch-and-
bound algorithm of De Waal and Quere (2003) can be modified to solve the new error localisation 
problem. For the sake of brevity, the description in this paper was limited to numerical variables with 
edits in the form of linear inequalities. This restriction is not necessary, however: just like the original 
algorithm of De Waal and Quere (2003), the new algorithm can also be applied to categorical and mixed 
data. The interested reader is referred to Scholtus (2011) for details. 
 
39. The above description shows that it is theoretically possible to take the distinction between hard 
and soft edits into account in automatic editing. It remains to be seen whether the new error localisation 
algorithm is also computationally feasible in practice. A prototype implementation of the new algorithm 
is currently being made, using the R programming language, in order to answer this question. Assuming 
that the algorithm is computationally feasible, tests with realistic data also have to be conducted to see 
whether the new approach can be used to improve the quality of automatically edited data. Possibly, 
some refinements are necessary to make the new methodology work in practice. 
 
40. It is still an open problem how the costs of soft edit failures can best be modelled, i.e. how the 
term softD  in (8) should be defined. As mentioned above, an approach that takes the size of the edit 
failures into account is intuitively more appealing than using fixed failure weights. Scholtus (2011) shows 
how the size of the edit failures can be taken into account through dynamic failure weights, which are 
updated during an execution of the algorithm. Unfortunately, this makes the algorithm more complex. 
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Appendix: Proof of Theorem 2 
 
41. To facilitate the proof of Theorem 2, it is convenient to first prove an auxiliary lemma. Define, 
for each edit k

qψ , the index set k
qA  of the edit(s) in the previous node from which it has been derived. 

That is to say, define }{: lAk
q =  if k

qψ  is obtained by copying or fixing the value of a variable in edit l
q 1−ψ , 

and define },{: tsAk
q =  if k

qψ  is obtained by eliminating a variable from the pair of edits t
q

s
q 11, −− ψψ . 

 
Lemma 1. Consider the situation sketched in Theorem 2, and suppose that gx  has been eliminated to 

obtain qΨ  from 1−Ψq . If A  is a representing set of the index sets k
qA  that belong to all )2(

q
k
q Ψ∈ψ , then 

there exists a value for gx  which, together with the original values of the variables that are involved in 

qΨ , satisfies all edits in 1−Ψq  except those in A . 
 
Proof. Because of the fundamental property of Fourier-Motzkin elimination, it is clearly possible to find 
a value for gx  that satisfies all pairs of edits from 1−Ψq  that lead to implied edits in )1(

qΨ . In addition, by 
construction A  contains all indices of failed edits from 1−Ψq  that do not involve gx , as required. The only 

way for the lemma to be false, would be if there existed two edits, say s
q 1−ψ  and t

q 1−ψ , such that As∉  and 
At∉ , for which it is not possible to find a value for gx  that satisfies both edits. In this case, an implied 

edit can be generated by eliminating gx  from s
q 1−ψ  and t

q 1−ψ . Moreover, this implied edit must be failed 
by the original values of the other variables, by the fundamental property of Fourier-Motzkin elimination. 
In other words: the implied edit must be an element of )2(

qΨ . But this would contradict the assumption 

that A  is a representing set of k
qA  for all )2(

q
k
q Ψ∈ψ . This completes the proof of Lemma 1. 

 
42. The proof of Theorem 2 now proceeds by induction on the number of treated variables q . For 

0=q  the statement is trivial, and for 1=q  the theorem follows as a special case of Lemma 1. (Note that 
kk AB 11 ≡ .) Suppose therefore that the statement has been proved for all }1,,1,0{ −∈ Qq K , and consider 

the case Qq = , where 2≥Q . If QΨ  is obtained from 1−ΨQ  by fixing a variable to its original value, and 

B  is a representing set of the sets k
QB  for the failed edits from QΨ , then by construction B  is also a 

representing set of the sets k
QB 1−  for the failed edits from 1−ΨQ . Thus the statement for Qq =  follows 

immediately from the induction hypothesis in this case. 
 
43. Suppose now that QΨ  is obtained by eliminating a variable, say gx , from 1−ΨQ . Define, for each 

)2(
Q

k
Q Ψ∈ψ , the index set k

QA  of (one or two) edits from 1−ΨQ  from which k
Qψ  is derived, just as above. 

Next, use B  to construct a set A  through the following procedure, for each )2(
Q

k
Q Ψ∈ψ : 

• If k
Qψ  was obtained by copying l

Q 1−ψ  (so }{lAk
Q =  and l

Q
k
Q BB 1−= ), then add l  to A . 

• If k
Qψ  was obtained by eliminating gx  from s

Q 1−ψ  and t
Q 1−ψ  (so },{ tsAk

Q =  and t
Q

s
Q

k
Q BBB 11 −− ∪= ), 

then add s  to A  if B  contains an element of s
QB 1− , and add t  to A  otherwise. 

It is easy to see that this construction leads to a representing set A  of the index sets k
QA  for all )2(

Q
k
Q Ψ∈ψ . 

 
44. According to Lemma 1, there exists a value for gx  which, together with the original values of the 
variables that have not been treated, satisfies the edits in 1−ΨQ  except those in A . That is to say, 1−ΨQ  

can be partitioned similarly to QΨ  as )2(
1

)1(
11 −−− Ψ∪Ψ=Ψ QQQ , where )2(

1−ΨQ  contains the edits with indices in 
A . In addition, it is not difficult to see that the above construction implies that B  is a representing set of 
the index sets k

QB 1−  for all )2(
11 −− Ψ∈ Q

k
Qψ . Hence it follows from the induction hypothesis that, given the 



 11

original values of the variables that have not been eliminated and given the chosen value for gx , there 
exist values for the other eliminated variables that satisfy all the original edits except those in B . This 
proves the statement for Qq = , and the proof of Theorem 2 is complete. 
 


