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I. A SHORT REVIEW OF COMPOSITIONAL ANALYSIS

A. Aitchison Geometry on the Simplex

1. Compositional data analysis has been the subject of a number of papers, pioneered by J.
Aitchison [1] over the past twenty years. As a methodology of statistical investigation, composi-
tional analysis finds application in all cases where the main object of interest is an n-dimensional
variate x, whose components are strictly positive continuous real variables, to be regarded as
portions of a total amount κ, i.e. they belong to the n-dimensional simplex

S(n) =

{

x = (x1, . . . , xn) : 0 < xk < κ ,
n∑

k=1

xk = κ

}

. (1)

Elements of S(n) are named compositions. Examples are easily found in the context of geochemical
data analysis, balance sheets analysis, etc. Under such circumstances, it may be relevant to consider
the xk’s only in terms of their relative importance, i.e. with no reference to their absolute size.
If this perspective is adopted, comparing different samples of the variate becomes a matter of
comparing one by one all the possible pairwise ratios of their components, since these are the
only quantities that bring the relative information. Along this line, Aitchison has introduced an
appropriate distance function,

dA(x, y) =

√
√
√
√
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2n∑
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xj

)

− ln

(
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yj

)]2

, (2)
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where all these ratios enter equally weighted, smoothed and symmetrized by logarithms. The
Aitchison metric looks different from the more popular Mahalanobis one, as it corresponds to
evaluating the distance between observations according to a different criterion. The change of
metric makes most classical statistical techniques useless and imposes the introduction of more
sophisticated mathematical tools, in order to restore the conditions for a statistical investigation.

2. Usually, observations in a compositional data set cannot be directly compared, as their parts
sum to different constants κ. This kind of situation occurs frequently in practice: think for instance
of a chemical data set, where the observations consist of the amounts of certain chemical elements
(expressed in a given unit) in each of the analyzed samples; obviously the observed values depend
on the total weight of the sample. Nevertheless, all parts of each sample can be rescaled by a given
factor, depending on the sample, chosen so that different observations fulfill the same compositional
constraint. The rescaling is mathematically encoded via a closure transformation

C(x) =

(
κx1

∑n
k=1 xk

, . . . ,
κxn

∑n
k=1 xk

)

, (3)

which rescales x and leaves all the pairwise ratios of its components unchanged. It should be
remarked that the Aitchison distance is closure–invariant, since it does not depend on ratios of
components belonging to x and y respectively. Nevertheless, the closure transformation has a the-
oretical rôle in the construction of a theory of compositional analysis, since it turns an experimental
multivariate data set into a set of elements of S(n).

3. The Aitchison distance can be naturally obtained by providing the n–dimensional simplex
with a linear vector space structure, as originally proposed by Aitchison (see ref. [1] for a detailed
presentation of the idea). The sum of two elements of the simplex is here defined by

x⊕ y = C(x1y1, . . . , xnyn) , x, y ∈ S(n) , (4)

and the product of an element of the simplex by a real variable is defined by

α⊗ x = C(xα1 , . . . , x
α
n) , α ∈ R , x ∈ S(n) . (5)

Note that the closure C is needed in both eqs. (4–5) in order to project the results of the operations
onto S(n). To complete the construction of a linear vector space, an inner product has to be
assigned. This is given by

〈x, y〉A =
1

2n

n∑

i,j=1

ln

(
xi
xj

)

ln

(
yi
yj

)

. (6)

Showing that the operations introduced in eqs. (4–6) fulfill the standard algebraic properties of
vector sum, scalar multiplication and inner product is straightforward, though it goes beyond the
aims of the present report. We conclude this section by reminding the reader that once a vector
space is provided with an inner product, a metric structure can be introduced as well. The norm
induced by the inner product is given by ||x||A =

√

〈x, x〉A, and the distance induced by the norm
is accordingly defined by

dA(x, y) = ||x⊖ y||A , (7)

where x⊖ y ≡ x⊕ [(−1)⊗ y]. Eqs. (2) and (7) are equivalent.
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B. Isometric Logratio Transformation

4. The vector space structure introduced in the previous section is built on top of objects (i.e.
experimental observations) represented by an n–tuple, whose components fulfill a compositional
constraint. This representation is definitely legitimate, though mathematically unappealing. The
presence of a scalar constraint entails that the faithful dimension of our vector space is n−1 instead
of n. In order to get rid of the redundancy induced by the constraint and to accordingly provide a
minimal description of the n–dimensional simplex as a (n−1)–dimensional linear vector space, the
simplest solution is to perform an appropriate projection of the original n–tuple onto a (n − 1)–
tuple with unconstrained components. Several ways of doing have been explored extensively in the
literature (see ref. [2] for a review). Here we are interested in one particular mapping, known as
the Isometric Logratio Transformation (ILR), firstly introduced in [3]. The feature that makes the
ILR a remarkable transformation is that it is an isometry, i.e. it establishes a relation between
different vector spaces that preserves the distance. The ILR is defined as follows. As a first step a
set of generators of the simplex is introduced,

wk = C( 1, . . . , 1
︸ ︷︷ ︸

k−1 times

, e, 1, . . . , 1
︸ ︷︷ ︸

n−k times

) , k = 1, . . . , n , (8)

where the Euler constant e is placed in the kth position. As usual, the closure is needed to
guarantee that wk ∈ S(n). Obviously, each element of the simplex can be represented as a linear
combination of the wk’s with an appropriate choice of coefficients. Nevertheless, the n generators
do not constitute a basis of the simplex, since their number exceeds the dimension of S(n) by one.
A basis can be obtained from the generators in a straightforward way: one of the generators is
dropped, conventionally wn, and then a Gram-Schmidt orthonormalization procedure (employing
the inner product of eq. (6)) is applied to the remaining n − 1 generators. The n − 1 vectors
{ek}k=1,...,n−1 thus obtained constitute a basis of S(n). Obviously, this basis is not unique and is
related to any other basis of via a linear transformation of maximal rank. In what follows, we
consider one particular choice of the vector basis, i.e.

ek = C
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, 1, . . . , 1
︸ ︷︷ ︸

n−k−1 times








, (9)

with k = 1, . . . , n− 1. The Isometric Logratio Transformation is the mapping

x ∈ S(n) → ilr(x) = (〈x, e1〉A, . . . , 〈x, en−1〉A) . (10)

As previously mentioned, the ILR is an isometry. It maps the Aitchison distance in S(n) onto the
Euclidean distance in the transformed space, i.e.

dA(x, y) = dE (ilr(x), ilr(y)) , x, y ∈ S(n) , (11)

where

dE(u, v) =

√
√
√
√

n∑

i=1

(ui − vi)2 , u, v ∈ R
n−1 . (12)
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Eqs. (11-12) will be used in sect. III.

C. Distributional transformations

5. In what follow, we shall describe an algorithm for the search of compositional outliers. The
detection of one or more outliers in a given data set will be based on a statistical test, whose
outcome rests in its turn on a distributional assumption on the data. Though in most applications
the simplest statistical hypothesis would involve the normal distribution (or the multi-normal one,
in case of multivariate observations), it can be easily realized that this is not the case: each
component of a given compositional vector is a strictly positive number; as such, the tails of its
marginal distribution can never extend to the negative semi-axis, as would be the case for a normal
variable. In fact, Aitchison has shown in [4] that the most natural distributional assumption for
compositional data is the log–normal one. From now on, we shall adopt this view. Accordingly,
we shall assume that the observations of our data set D = {x(k) ∈ R+}k=1,...,N tend to distribute
according to an n–dimensional log–normal distribution Λn(ξ,Ω) with given log–scale vector ξ and
scattering matrix Ω, i.e.

H0 : {x(1) ∼ Λn(ξ,Ω)} ∩ {x(2) ∼ Λn(ξ,Ω)} ∩ . . . ∩ {x(N) ∼ Λn(ξ,Ω)} . (13)

The question arises naturally as to how the ILR acts on Λn(ξ,Ω). In other words, if x ∼ Λn(ξ,Ω),
how does ilr (C(x)) distribute? This question has been partially addressed by Aitchison, who has
shown in [4] the following statement:

Theorem. Iff x ∼ Λn(ξ,Ω), then the closure C(x) ∼ Ln−1(Aξ,AΩA
T), where the rectangular

matrix A has dimension (n− 1)×n and is given by A = [In−1,−en−1], In being the unit matrix of
order n and en being an n–dimensional vector with unit components. �

Here we denote Ln−1(ν,Γ) the Logistic distribution with p.d.f. given by

f(u1, . . . , un−1) =
1

(2π)n/2|Γ|1/2





n∏

j=1

uj



 exp

{

−
1

2
[ln(u/un)− ν]TΓ−1[ln(u/un)− ν]

}

,

un = 1−
n∑

j=1

uj . (14)

By using this theorem, it is easy to show that x ∼ Λn(ξ,Ω) entails ilr (C(x)) ∼ Nn−1(µ,Σ), i.e.
ilr (C(x)) distributes normally with mean µ and covariance matrix Σ, easily related to ξ and Ω
via known linear transformations. The converse is also true, i.e. ilr (C(x)) ∼ Nn−1(µ,Σ) entails
x ∼ Λn(ξ,Ω). In summary, the assumption of log–normality of the original data propagates to the
closed data and the ILR–transformed ones according to the distributional chain

x ∼ Λn ⇔ C(x) ∼ Ln−1 ⇔ ilr (C(x)) ∼ Nn−1 . (15)
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II. THE FORWARD SEARCH ALGORITHM (FSA)

A. Construction of the signal

6. In this report we consider the problem of detecting potential outliers within a compositional
data set D = {x(k) ∈ R+}k=1,...,N . Among the presently known methodologies that allow to detect
and eliminate outlying data, we focus on the one based on the Forward Search Algorithm (FSA),
originally introduced in [5] and thoroughly discussed in [6] for the case of multivariate analysis.
The original algorithm applies to the case of normally distributed data, i.e. the null hypothesis
assumes that all the observations distribute simultaneously according to x ∼ Nn(µ0,Σ0), i.e.

H0 : {x(1) ∼ Nn(µ0,Σ0)} ∩ {x(2) ∼ Nn(µ0,Σ0)} ∩ . . . ∩ {x(N) ∼ Nn(µ0,Σ0)} . (16)

The algorithm makes use of the Mahalanobis distance

dM(x, y|Σ) =
√

(x− y)TΣ−1(x− y) , x, y ∈ R
n , (17)

and consists of a recursion of sorting steps. Initially, a subset S(m0) ⊂ D of m0 observations
is chosen (randomly or close to the bulk of the distribution) and is used in order to provide an
estimate µ(m0) of the true mean µ0 and an estimate Σ(m0) of the true covariance matrix Σ0.
Then, the recursion starts and its mth step (m ≥ m0) is described as follows:

• D is sorted according to the increasing values of the Mahalanobis distance dM(x) of the single
observation x from µ(m), given the sample estimate Σ(m) of the covariance matrix,

dM(x) ≡ dM (x, µ(m)|Σ(m)) ; (18)

• the square of the Mahalanobis distance of the (m+ 1)th observation in D is stored together
with the corresponding identification number and defines the mth value of what is named the
signal of the FSA;

• S(m) is replaced by a new subset S(m+ 1), made of the first m+ 1 observations of D;

• a new estimate of µ0 and Σ0 is obtained from the observations in S(m + 1). Since the
observations in D are ordered, the estimate Σ(m+ 1) of Σ0 is biased and must be corrected
in order to remove the effects of truncating D at the (m + 1)th observation. The correction
is described in [7].

The sorting procedure repeats iteratively until the estimate of the distributional parameters involves
all the inliers and the occurrence of the first outlier shows up as a break–point (or a jump) in the
values taken by the signal as a function of m.

B. Testing the signal

7. In order to give a quantitative meaning to the break–point and to associate it with the
occurrence of an outlier, a statistical test, resting on the normality hypothesis, is performed.
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At each step of the recursion, the computation of the signal is accompanied by a measurement
of its theoretically admissible lowest and highest values at – say – 99% confidence level under
H0. The envelope of the pointwise values of these lower and upper thresholds for m0 ≤ m ≤
N − 1 generates two curves that surround the signal until an outlier enters the estimate of the
distributional parameters. The violation of the envelopes signals the income of an outlier within
S(m). The computation of the thresholds is made possible by the fact that the squares of the
Mahalanobis distance from the mean ideally distribute according to χ2

n under H0. When the
dataset is sorted as prescribed by the FSA, the Mahalanobis distances from the mean constitute
a set of n order statistics. The distribution of the signal, i.e. the (m+ 1)th order statistic, cannot
be computed in closed form. Nevertheless, its percentiles (coinciding with the above mentioned
thresholds at α = 0.01 and 1 − α = 0.99) can be obtained from a general result firstly derived in
[8],

ym+1,N ;α = (χ2
n)

−1

(
m+ 1

m+ 1 + (N −m)f2(N−m),2(m+1);1−α

)

, m0 ≤ m ≤ N − 1 , (19)

where the symbol fa,b;α denotes the α–percentile of the Fisher distribution with parameters (a, b).

III. EXTENSION OF THE FSA TO THE COMPOSITIONAL CASE

8. In order to be applied to a compositional data set, the FSA has to be modified in two respects:

• the construction of the signal has to be performed with the Mahalanobis distance being
replaced by the Aitchison one. There is a practical advantage in implementing this step.
While the measurement of the Mahalanobis distance at themth step rests on themth estimate
of the covariance matrix, this does not happen with the Aitchison distance. If the covariance
matrix is estimated with a finite level of precision, the Mahalanobis distance is affected
by a statistical uncertainty which is absent in the Aitchison distance. In other words, the
fluctuations in the estimate of the covariance matrix turn the value of the Mahalanobis
distance into a range of values.

• the statistical tests, i.e. the construction of the envelopes has to take into account the
distributional changes in the null hypothesis. We have seen in sect. I that a convenient
choice for the distributional hypothesis of a compositional multivariate is expressed in terms
of the log–normal distribution. Accordingly, the statistical tests performed on the signal have
to be modified so as to compare the value of the (m + 1)th ordered Aitchison distance with
the thresholds corresponding to – say – the α = 0.01 and 1 − α = 0.99 percentiles of its
distribution.

In order to obtain the percentiles of the distribution of the (m + 1)th ordered Aitchison distance,
we use the isometric property of the ILR. Under the null hypothesis, the observations of D are
log–normally distributed. This entails that the observations of ilr (C(D)) are normally distributed.
Moreover, the Aitchison distance between two observations of D equal the Euclidean distance
between the corresponding ILR–transformed data, as shown in eq. (11). It follows that the
distribution of the Aitchison distance under the null hypothesis coincides with the distribution of
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the Euclidean distance under the normality hypothesis in the Euclidean space obtained from the
ILR transformation.

9. The distribution of the squared Euclidean distance under the hypothesis of normally dis-
tributed multivariate data has been studied in [9]. Here it is shown that the cumulative distribution
function H(d2;µ,Σ) of the squared Euclidean distance d2 = d2E(x, µ) of a normally distributed vari-
able x ∼ Nn(µ,Σ) from the mean µ, can be expressed in terms of an infinite sum of distributions
of χ2–type. More precisely, if Fn(d

2) denotes the cumulative distribution function of χ2
n, a central

chi-square with n degrees of freedom, then H(d2;µ,Σ) is given by

H(d2;µ,Σ) =

∞∑

j=0

cj(µ,Σ, p)Fn+2j(d
2/p) , (20)

where the coefficients cj depend on the distributional parameters and can be recursively obtained,
and p is a scale factor that can be adjusted to improve the convergence properties of the series.
A description of the recursion is beyond the aims of the present report and is detailed in [10], as
well as some technical aspects of the numerical implementation of eq. (20). Here, we just observe
that the infinite sum can be truncated with no uncontrolled systematic error and that on average
a very good approximation is given by the first few terms of the expansion. This leads to a fast
evaluation of H(d2;µ,Σ), and consequently of the envelopes of the FSA.

10. It should also be noticed that H(d2;µ,Σ) depends on the distributional parameters µ and
Σ, i.e. it is not a pivotal distribution. Accordingly, the advantage of having a clean signal, i.e.
a signal which does not depend on the estimate of the covariance matrix, is compensated by the
disadvantage of having thresholds that depend on such estimates. Unfortunately, this is the only
possible way of designing a FSA for compositional data.

IV. A CASE STUDY: THE 2010 ITALIAN AGRICULTURAL CENSUS

11. As an example, we show an application of our compositional FSA to some preliminary data
of the sixth Italian agricultural census, held in October 2010. Agricultural holdings are stratified
by type of crop within each region of Italy. We focus on the province of Alessandria and the local
holdings growing three cereals: soft and spelt wheat, barley and corn. Our data set is made of
N = 148 trivariate observations, normalized so that κ = 1. Inverse fractional parts are shown
against each other on a log–log scale in scatter-plots of Figs. 1–2. Logarithmic scales are needed
in order to emphasize data with extremely low values of one or more parts. Out of the N = 148
observations, the compositional FSA detects 7 outliers, shown as green circled points. Last plot
of Fig. 2 (forward plot) shows the signal vs. m and the α = 0.005 and 1 − α = 0.995 over–
imposed envelopes at N∗ = 142 (see ref. [6] for an explanation of the meaning of the over–imposed
envelopes). Though not far from the bulk of the distribution, the units marked as outliers are
statistically incompatible with the distribution of the remaining data.
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Figure 1: Agricultural surfaces of Italian holdings growing soft and spelt wheat, barley and corn in
the province of Alessandria (source: ISTAT, Italian Agricultural Census 2010). Left/Right plots:
inverse fractional surface parts (left: barley vs. soft and spelt wheat; right: corn vs. soft and
spelt wheat) on a log–log scale; green circles denote data that have been marked as outliers by the
compositional forward search algorithm.

Figure 2: Agricultural surfaces of Italian holdings growing soft and spelt wheat, barley and corn in
the province of Alessandria (source: ISTAT, Italian Agricultural Census 2010). Left plot: inverse
fractional surface parts (corn vs. barley); green circles denote data that have been marked as
outliers by the compositional forward search algorithm. Right plot: forward plot, the (m + 1)th

ordered Aitchison squared distance is plotted versus m; a true signal break–point takes place at
N∗ = 142 (N = 148), thus signalling the presence of 7 outliers.

V. CONCLUSIONS

12. In this report we have presented an extension of the Forward Search Algorithm for multi-
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variate outlier detection to the case where data components satisfy a compositional constraint, i.e.
they are represented by positive numbers with fixed sum (in a mathematical sense, compositional
data live on a multidimensional simplex). The original Forward Search Algorithm, based on the
Mahalanobis metric distance, is reformulated in terms of the Aitchison’s one, which is better suited
to the analysis of compositional data. The new formulation involves both the construction of a
signal, represented by the minimum squared distance from the mean of an iteratively growing data
subset, and the test statistics that are employed in order to detect signal breakpoints produced by
outliers. The main ingredients of our construction are: (i) an Euclideanization of compositional
data in terms of the Isometric Logratio Transform originally introduced by Aitchison; (ii) a nu-
merical reconstruction of the distribution of Euclidean squared distances in terms of a chi-square
series, according to an established result by Ruben (1962) (see [9]). As a case study, we probed
the new algorithm with data coming from the latest Italian agricultural census (2010).
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