
WP.40 
ENGLISH ONLY 

 
UNITED NATIONS  
ECONOMIC COMMISSION FOR EUROPE 
 
CONFERENCE OF EUROPEAN STATISTICIANS 
 
Work Session on Statistical Data Editing 
(Ljubljana, Slovenia, 9-11 May 2011) 
 
Topic (vii): New and emerging methods 
 

Partial (donor) imputation with adjustments 
 

Key Invited Paper 

Prepared by Jeroen Pannekoek, Statistics Netherlands and Li-Chun Zhang, Statistics Norway 
 
I. Introduction  
 
1. We are concerned with the task of reconciling conflicting information in statistical micro data 
that may arise due to partial (donor) imputation. The missing values are imputed either by the 
corresponding values of a suitable donor or by statistical estimation. The imputed record contains then 
two parts of data from different sources. One part contains the observed values from the original record 
and the other the imputed values. Edit rules that involve variables from both parts of the record will often 
be violated. For instance in business statistics we may have that turnover must be equal to the sum of 
profit and costs, costs is again the sum of costs for material, personnel, housing etc. and all variables 
except profit are non-negative. If some of the variables are missing, the imputed values taken from a 
donor may not satisfy the various restrictions, together with the observed values of the original record. 
 
2. One strategy to remedy this problem is to make adjustments to the imputed values that are 
minimal in some sense, such that a record consistent with the edit rules results. In this paper, the edit 
rules are specified as linear equality-/inequality-constraints on the variables. The minimal adjustments are 
then obtained by minimizing a chosen distance metric subjected to these constraints.  
 
3. We consider two different approaches to the distance metric. In the first case one sets out to 
minimize the changes directly. It will be shown that different distance functions under this approach lead 
to adjustments that preserve different aspects of the structure of the data. In the second case one sets out 
to minimize the differences in the changes, so that the adjustments are most ‘uniform’ in some sense. 
Under this latter approach, even the values that are not explicitly involved in any constraints will be 
adjusted because of the changes made to the variables that are directly constraint-bound. The properties 
and interpretations of the different approaches are illustrated numerically based on empirical data in 
business statistics.   
 
II. Numerical illustration of the problem 
 
A. Imputation of a business record with missing data 
 
4. To illustrate the problem, we consider a small part of a record from a structural business survey 
with missing data that is to be imputed. The data for this record are shown in Table 1. For this record two 
response patterns are assumed; one with only Turnover observed and one were also Employees and 
Wages are observed. There are a number of common ways to impute the missing values in such a record. 
One possibility is the use of the values from a donor record to impute the missing values in the recipient 
record. This donor can, for instance, be the “nearest neighbour” donor record, from the same category of 
economic activity and closest to the recipient record in some metric based on some common observed 
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variables, for instance Turnover for response pattern (I) and Employees, Turnover and Wages for 
response pattern (II). Imputation then entails the replacement of the missing values by the corresponding 
values from the donor record, we call this partial donor imputation because not all the values of the donor 
are transferred to the recipient. 
 
Tabel 1. Data, missing data and donor values for some variables in a business record. 

Variable Name Response 
pattern 1 

Response 
pattern 2 

Donor 
Values 

x1 Profit   330 
x2 Employees (Number of employees)  25 20 
x3 Turnover main (Turnover main activity)   1000 
x4 Turnover other (Turnover other activities)   30 
x5 Turnover (Total turnover) 950 950 1030 
x6 Wages (Costs of wages and salaries)  550 500 
x7 Other costs   200 
x8 Total costs   700 
 
B. The consistency problem 
 
5. Business records generally have to adhere to a number of accounting and logical constraints. 
These constraints are widely employed for checking the validity of a record and are, in this context, 
referred to as edit-rules. For the example record above, the following three edit-rules are formulated: 
 

a1: x1 - x5 + x8 = 0 (Profit = Turnover – Total Costs) 
a2: x5 - x3 - x4 = 0 (Turnover = Turnover main + Turnover other) 
a3: x8 - x6 - x7 = 0 (Total Costs = Wages + Other costs) 

 
6. Partial donor imputation for either response pattern in Table 1 leads to violation of these edit-
rules, which we refer to as the consistency problem. In particular, for response pattern (I), the first two 
edit-rules involving Turnover are violated and, for response pattern (II), all three edit-rules are violated. 
To obtain a consistent record some of the values in thes record have to be changed or “adjusted”. Often, 
the imputed values are the candidates for adjustment while the actually observed values are not changed. 
However, other choices of adjustable and non-adjustable or fixed values can be made. 
 
7. Traditional adjustment methods, such as the prorating method implemented in Banff (Banff 
Support Team, 2008), are designed to handle one constraint at a time. In response pattern (I), the 
prorating method could proceed as follows: (1) adjust the imputed values for Total costs and Profit with a 
factor 950/1030 to make them add up to the observed Turnover, (2) then adjust the imputed values for 
Turnover main and Turnover other with the same factor to satisfy the second edit and (3) adjust the 
imputed values of Wages and Other costs, also with the same factor to make them add up to the 
previously adjusted value of Total costs. Indeed, one may be tempted to extend this rescaling to imputed 
variables that are not in edit-constraints (only Employees in this case), which is not necessay for 
consistency with the specified edit-rules but can be justifiable if it is assumed that these variables are 
related to Turnover in approximately the same way as in the donor record. This last option is further 
discussed in section IV.  
 
8. This easy and intuitive solution becomes more complicated for the response pattern (II). Whereas 
the first two steps may be carried out as before, the third step shows some difficulties of this approach. 
Total costs appears in two edit-rules: a1 and a2. In both edit-rules one variable is observed (Turnover and 
Wages, respectively) but Total costs is only adjusted to satisfy a1 and the resulting adjusted value is 
irrespective of the observed value of Wages, thereby ignoring relevant information on the Total costs. 
Indeed, in such cases it can even happen that Total costs is adjusted downwards to the extend that it 
becomes smaller than Wages and hence there is no acceptable non-negative solution for Other costs. 
Adjusting a variable that appears in multiple edit-rules to just one of them is not only suboptimal in the 
sense described above, but also leads to rather arbitrary choices of the order in which edit-rules should be 
handled.  



 3

 
9. Another problem that the second response pattern illustrates is that a simple proportional 
adjustment is more plausible when variables have to be adjusted such that their sum equals a constant 
than when variables have to be adjusted in order to render their difference equal to a constant. For 
instance, for edit rule a3, formulated as Wages = Total costs – Other costs, with values 550 ≠ 700 - 200 
and 550 fixed, a proportional adjustment of Total costs and Other costs would result in values of 770 and 
220. However, , much smaller adjustments can be obtained by increasing Total costs to 740  while 
decresing  Other costs to 190. Such cases are therefore mostly excluded from prorating schemes. 
 
10. For the further analysis of edit-rules and adjustment methods it is convenient to express the 
restrictions in matrix notation. as 0Ax = , where A is the constraint or restriction matrix. For the 
restrictions a1 – a3 this matrix is given by 
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Notice that the non-zero elements in a row of an accounting matrix identify all the variables that are 
involved in the corresponding constraint, and the non-zero elements in a column of an accounting matrix 
identify all the constraints that involve the corresponding variable.  
 
11. Successive moves from one non-zero element to another either in the same row or in the same 
column of a restriction matrix generates a path. A set of variables are connected (to each other) if there is 
a path between any two of them. A variable that is not connected with any other variables is an isolated 
variable. In the accounting matrix A above, the variable Employees (x2) is an isolated variable, and the 
rest of the variables are connected. An example of a path between Profit (x1) and Turnover main (x3) is 
(x1 → x5 ↓ x5 → x3). Given a set of connected variables, a joint among them is a variable that has more 
than one non-zero element in the corresponding column of the restriction matrix. Different constraints are 
connected to each other through the joints. Indeed, two subsets of variables are separated from each other 
by a set of joints if any path between two variables, i.e. one form each subset, must pass through the set 
of joints. The joints of the matrix A here are (x5, x8). Moreover, (x3, x4) are separated from all the other 
variables by x5, and (x6, x7) are separated from the others by x8, and x1 by (x5, x8). 
 
12. We observe the following given the restriction matrix.  
(a) An isolated variable, such as Employees (x2) in Table 1, can be imputed freely without causing 
consistency problems.  
(b) Provided all the joints are observed or given by external sources, such as (x5, x8) in Table 1, the 
consistency problem among the set of connected variables can be resolved by dealing with one constraint 
at a time, e.g. by separate prorating for each constraint.  
(c) Adjustments of a subset of variables do not cause consistency problem for the remaining connected 
variables given the joints that separate these variables. In Table 1, for instance, (x3, x4) can be adjusted 
freely given x5 without causing consistency problem for the other variables.  
(d) The imputation (or adjustment) of any variable may potentially cause consistency problems for all the 
connected variables that are not separated by the given joints. In both response patterns of Table 1 the 
joint x5 is given. However, only (x3, x4) are separated from the other variables by x5. The consistency 
problem among the rest of the connected variables (x1, x6, x7, x8) can be resolved using a traditional 
method in two steps: first, adjust the remaining joints (i.e. x8) in a consistent manner given the observed 
joints (i.e. x5); next, consider x8 to be fixed and adjust the rest of the variables as in situation (a) and (b). 
Thus, for response pattern (I), one might first impute x8, say, proportionally to x5. The remaining 
variables can be adjusted with regard to one-constraint at a time. For the response pattern (II), however, 
x6 is also observed, such that it no longer seems desirable if one is to impute x8 without taking into 
account x6, because the two are connected. There arises therefore a need to deal with all the constraints 
that are connected to x8 simultaneously, which requires an approach beyond the realm of traditional 
single-constraint adjustment methods such as prorating.  
(e) Constraints for which it is optimal to adjust the variables in the same direction (either an increase or a 
decrease) can be identified from the restriction matrix as rows in which the entries corresponding to 
adjustable variables have the same sign.   
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C. An optimization approach 
 
13. One possible strategy to remedy the general situation of the consistency problem is to adjust the 
imputed values, simultaneously and as little as possible, such that the edit-rules are satisfied. If the 
resulting adjusted record is denoted by x~ , this adjustment problem can be formulated as: 

0xA
xxx x

=
=

~   ..
),(minarg~

0

ts
D

, 

with ),( 0xxD  a function measuring the distance or deviance between x  and 0x . In the next section we 
will consider different functions D for the adjustment problem. In addition to the equality constraints, we 
also often have inequality constraints, the simplest of which is the non-negativity of most economic 
variables. Other inequality constraints arise, for instance, when it is known that Wages should not be less 
than a certain factor minf  (the minimum wage) times Employees. To also include linear inequality 
constraints the adjustment problem can be extended as  

),(minarg~
0xxx x D= .         (1) 

0xA0xA ≤= ~   ~   .. 21 and ts  
For ease of exposition we will write the constraints in (1) more compactly as 0xA ≤~ . 
 
III. Minimum adjustment approaches 
 
A.  Loss-functions and adjustment models 
 
14. The conditions for a solution to the problem formulated in (1) can be found by inspection of the 
Lagrangian for this problem, which can be written as 

( )∑ ∑+=
k ii kik xaDL α),(),( 0xxαx ,        (2) 

with α  a vector of Langrange multipliers, one for each of the constraints k, kia  the element in the k-th 
row (corresponding to constraint k) and i-th column (corresponding to variable xi) of the restriction matrix 
A and D(x, x0) a loss-function measuring the distance or discrepancy between x and x0. From 
optimisation theory it is well known that for a convex function D(x, x0) and linear (in)equality 
constraints, the solution vector x~  must satisfy the so-called Karush-Kuhn-Tucker (KKT) conditions (e.g. 
Luenberger, 1984). One of these conditions is that the gradient of the Lagrangian w.r.t. x is zero, i.e.  

0),~(),~( 0 =+′=′ ∑k kikixix axDxL
ii

αxα ,       (3) 

with 
ixL′  the gradient of L w.r.t. x  and xD′  the gradient of D w.r.t. x. From this condition alone, we can 

already see how different choices for D lead to different solutions to the adjustment problem. Below we 
shall consider three familiar choices for D, Least Squares, Weighted Least Squares and Kullback-Leibler 
divergence, and show how these different choices result in different structures of the adjustments, which 
we will refer to as the adjustment models. 
 
15. Least Squares (LS). First, we consider the least squares criterion to find an adjusted x-vector 
that is closest to the original unadjusted data, that is: )()(),( 002

1
0 xxxxxx −−= TD , is the Least Squares 

(LS) criterion, iiix xxxD
i ,00

~),~( −=′ x , and we obtain from (3) 

kk kiii axx α∑+= ,0
~ .         (4) 

This shows that the least squares criterion results in an additive structure for the adjustments: the total 
adjustment to variable iox ,  is the sum of adjustments to each of the constraints k. These adjustments 
consist of an adjustment parameters kα  that describes the amount of adjustment due to constraint k and 
variables kia  (with values 1,-1 or 0) that describe whether variable iox ,  is adjusted by kα , kα−  or not at 
all. The adjustment  
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16. Weighted Least Squares (WLS). For the weighed least squares criterion, 
),( 0xxD = ))(()( 002

1 xxwxx −− DiagT , with )(wDiag  a diagonal matrix with a vector with weights 
along the diagonal, we obtain from (3) 

kk ki
i
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Contrary to the least squares case where the amount of adjustment is to a constraint is equal in absolute 
value (if it is not zero) for all variables in that constraint, the amount of adjustment now varies between 
variables according to the weights: variables with large weights are adjusted less than variables with 
small weights. The weighted least squares approach to the adjustment problem has been applied by 
Thomson et al. (2005). They used weights of 10,000 for observed values and weights of 1 for imputed 
values. Effectively, this means that if a consistent solution can be obtained by changing only imputed 
variables, this solution will be found. Otherwise (some of the) observed variables will also be adjusted.  
 
17. One specific form of weights that is worth mentioning is obtained by setting the weight wi equal 
to 1/x0,i resulting, after dividing by x0,i in the adjustment model 
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which is an additive model for the ratio between the adjusted an unadjusted values. It may be noticed that 
the expression on the right-hand side of (6) is the first-order Taylor expansion (i.e. around 0 for all the 

kα ’s) to the multiplicative adjustment given by 
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~
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x
x
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From (6) we see that the kα ’s determine the difference from 1 of the ratio between the adjusted and 
unadjusted values, which is usually much smaller than unity in absolute value (e.g. an effect of 0.2 
implies a 20% increase due to adjustment which is large in practice). The products of the kα ’s are 
therefore often much smaller than the kα ’s themselves, in which cases (6) becomes a good 
approximation to (7), i.e. the corresponding WLS adjustments is roughly given as the product of the 
constraint-specific multiplicative adjustments. 
 
18. Kullback-Leibler divergence (KL). The Kullback-Leibler divergence measures the difference 
between x  and x0 by the function )1ln(ln ,0 −−=∑ iii iKL xxxD . It can be shown that for this 
discrepancy measure, the adjustment model takes on the following form 

( )kikkii axx α−∏×= exp~ .        (8) 

In this case the adjustments have a multiplicative form and the adjustment for each variable is the product 
of adjustments to each of the constraints. The adjustment factor )exp( kikk a αγ −=  in this product 
represents the adjustment to constraint k and equals 1 for ika  is 0 (no adjustment), kγ/1  for ika  is 1 and 
the inverse of this factor, kγ , for ika  is -1. 
 
B. The successive projection algorithm 
 
19. The optimization problem (1) can be solved explicitely if the objective function is the (weighted) 
least squares function and there are only equality constraints. For other convex functions and/or 
inequality constraints, problem (1) can be solved by several optimization algorithms. In this section we 
briefly review a very simple such algorithm that is easy to implement and contains as a special case the – 
among survey methodologists well known – Iterative Propoprtional Fitting (IPF) algorithm for adjusting 
contingency tables to new margins. Algorithms of this type are extensively discussed in Censor and 
Zenios (1997) and applications to adjustment problems are described in De Waal et al. (2011). The 
algorithm is an iterative procedure in which the edit-constraints are used one at a time. It starts by 
minimally adjusting the original inconsistent vector 0x  to one of the constraints. The resulting solution is 
then updated such that a next constraint is satisfied and the difference with the previous solution is 
minimized and so on. In this way, if there are K constraints, K minimal adjustment problems with a 
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single constraint each need to be solved, which is much easier than a simultaneous approach. After the K-
steps one iteration is completed and a next iteration starts that will again sequentially adjust the current 
solution to satisfy each of the constraints.  
 
20. To describe this algorithm we must make the distinction between adjustable variables and fixed 
variables more explicit. Without loss of generality we can separate the adjustable variables from the fixed 
values in x by the partitioning TT

o
Y
m ),( xxx =  where mx  denotes the subvector of x containing the 

imputed values (or more generally, the adjustable values) and ox  the subvector containing the remaining 
observed (or, more generally fixed) values. The restriction matrix A can then be partitioned conformably 
as ),( on AAA = . From 0Ax ≤  we then obtain as constraints for the adjustable 
variables: bxAxAm =−≤ oom , say. 
 
21. In an iteration t the algorithm cycles through the constraints adjusting the current x-vector to each 
of them. For equality constraints this adjustment solves the minimization problem 
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with m,ka  the row of mA  corresponding to constraint k and kb  the corresponding element of b. The 

equality constraint k
kt

mm,k b=,xa  defines a hyperplane and kt
m
,x  is the vector on this hyperplane closest to 

1, −kt
mx . Therefore, it is the (generalized) projection with respect to the distance D of  1, −kt

mx  on this 

hyperplane, which is denoted above by  )( 1,
,

−kt
mkDP x . For the least-squares criterion this is the usual 

orthogonal Euclidean projection. As the algorithm cycles through the constraints the xm-vector is 
projected successively on each of the corresponding hyperplanes. and converges to the solution which is 
on the intersection of these hyperplanes. 
 
22. For the least squares criterion the solution this projection step is given by  
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Note that ktr ,  is a kind of “average” residual for constraint k since, if the values of km,a  are confined to 

0,  1 or - 1, then T
kmkm ,, aa  is the number of adjustable values in constraint k.  

 
23. For the KL-criterion, the projection cannot be expressed in closed form for general ka . However, 
if the elements of this vector are all either zero or one, which occurs when the constraint is that a sum of 

mx -values equals a fixed value kb , the adjustment to an equality constraint k  can be expressed as 
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where the adjustment factor kt ,ρ  is given by the rate of violation of constraint k: 
)/( ,,

, ∑=
i m,iikmk

kt xabρ . In this case the resulting algorithm is equivalent to the IPF-algorithm that, 
when applied to a rectangular contingency table, adjust the counts in the table to new row- and column-
totals by multiplying, successively, the counts in each row by a factor such that they add up to the new 
row-total and similarly for the columns. 
 
24. For inequality constraints, the constraint can be satisfied with “slack”, i.e. kt

mm,k
,xa  is strictly 

smaller than bk. In that case it may be possible to improve on the objective function by removing (some 
of) the adjustment to constraint k to the extend that either all adjustment is removed or the constraint 
becomes satisfied with equality. To accomplish this we first undo the adjustment made in the previous 
iteration to this constraint. If the constraint becomes violated, the projection step is performed with the 
result that the constraint becomes satisfied with equality, which is the minimum feasible adjustment. If 
after undoing the previous adjustment the constraint is not violated, no adjustment is performed. 
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IV. Generalized ratio adjustments 
 
25. The distance metrics considered above can be characterized as decomposable, in the sense that 
the overall distance between two vectors is given as a (weighted) sum of ‘distances’ between the 
corresponding components. A consequence is that a variable that does not stand in any constraints will 
retain the initial (donor) value under the minimum adjustment approach. But this might not always seem 
reasonable. For instance, for the response pattern 1 where Total Turnover is the only observed variable, it 
seems natural if one chooses to adjust all the donor values by the ratio between this observed Turnover 
value and the corresponding donor value, motivated by a common ratio-model-like assumption. 
 
26 It is important to distinguish between plausible adjustments based on a statistical assumption and 
necessary adjustments based on an edit constraint. While a ratio-model assumption can be used to 
motivate a proportionality constraint, it is a ‘soft’ one that the edited record does not necessarily have to 
satisfy, in contrast to a ‘hard’ proportionality edit constraint such as “Value = Price * Quantum” that must 
be imposed. Notice also that some range restrictions may be statistical and soft in the same way, such as a 
range restriction for the ratio between Total Wage Cost and Number of Employees.   
 
27. A general question is therefore how to take into account the various plausible ‘soft’ statistical 
assumptions in addition to the edit constraints? One possibility is first to carry out a prediction of the 
missing values based on appropriate statistical assumptions and utilizing both the observed and the donor 
values. Since the predicted values do not necessarily satisfy the edit constraints, one may apply the 
minimum adjustment approach afterwards to the predicted values instead of the donor values. Two 
difficulties may easily arise. Firstly, two steps of processing are required, which complicates both the 
implementation and the assessment of the statistical properties of a chosen procedure. Secondly, it may 
be difficult to formulate an explicit statistical model for prediction that is able to accommodate the 
various partial missing patterns that may occur. For instance, a straight-forward ratio adjustment may be 
intuitive in response pattern 1. But how should it be adapted to pattern 2, where the observed values do 
not share a common ratio, and there is no obvious choice of the size variable among the observed ones?  
 
28.  As a second possibility, one may add to the distance metric some suitable penalty terms based on 
statistical assumptions. Take as an example the ratio assumption between Total Wage Cost and Number 
of Employees. Let z  be, say, the difference between the ratio based on the donor values and that on the 
adjusted values, and one would like it to be as close to zero as possible. One can then add to the distance 
metric a penalty term 2

zzω , where zω  is a tuning parameter for controlling the weight of the penalty. 
Obviously, there are other ways to set up the penalty. What is important is to be able to bring into the 
minimization problem the variables that do not stand in any edit constraints. But it is not difficult to 
envisage that such a remedy would complicate the practice considerably, because suitable penalties must 
be constructed for all the variables that do not directly stand in any edit constraints. Indeed, for each one 
of them, one needs to formulate plausible statistical assumptions that necessarily involve some variables 
that do stand in at least one edit constraint, as well as to set the tuning parameters. 
 
29. For a potential general approach suitable for automated data processing, consider the following 
alternative loss function. Assume component-wise multiplicative adjustments given by 
 jj,0j xx δ=  

for J,...,1j = . Put  

 ∑ δ−δ=Δ
j

2
j )(

2
1

, where  ∑δ=δ
j

jJ
1

 

Minimizing Δ  subjected to the edit constraints yields what we call the generalized ratio adjustments. 
  
30. The first thing to notice is that, unlike the least-square-type of distance metrics considered earlier, 
the empirical variance of the component-wise adjustments is a non-decomposable loss function, where 
each adjustment is dependent on the other adjustments. Given non-decomposability as such, even the 
values that are not explicitly involved in any constraints will be adjusted because of the changes made to 
the variables that are constraint-bound. Here lies the potential of using a non-decomposable loss function 



 8 

to handle all the unconstrained variables in a practical production setting, without a detailed analysis of 
the various response patterns and their interactions with the edit constraints. 
 
31. Next, we notice that, provided a single observed value such as in response pattern 1, the 
generalized ratio adjustments are reduced to a global proportional adjustment according to the ratio 
between this observed value and the corresponding donor value, confirming to the ratio-adjustment 
intuition in this case. More generally, we consider the empirical-variance loss function to aim at a kind of 
most-uniform adjustment solution as a generalization of the ratio-model adjustments. For instance, for 
response pattern 2, where there are three observed values that do not share a common ratio towards the 
corresponding donor values, the generalized ratio adjustments are given by the component-wise ratios 
that deviate least from each other. To formulate an explicit statistical model as an extension of the simple 
ratio model in order to handle exactly this response pattern is not as practical in a production setting. 
 
32. Thirdly, we notice that there is no need for additive generalized ratio adjustments. Put  
 M

jj,0
A
jj,0j xxx δ=δ+=  

for J,...,1j = , where each additive adjustment A
jδ  corresponds to a multiplicative one M

jδ , provided the 

j,0x ’s are non-zero. The component-wise ratio adjustment can equivalently be given as 
M
jj,0

A
jj,0j x/1x/x δ=δ+=  

In other words, the same generalized ratio adjustments can be obtained by minimizing the empirical 
variance of M

jδ  (i.e. over j ) in the case of multiplicative adjustments or, equivalently, by minimizing the 

empirical variance of j,0
A
j x/δ  in the case of additive adjustments. The additive adjustments can only 

make a difference if the initially zero donor values are allowed to be non-zero through the adjustment. 
But since ratio adjustment of a zero value is not well defined, it would no longer make sense in such 
cases to adopt a ratio-type of motivation for the distance metric. 
 
33. Finally, there is an intrinsic difference between an approach for most-uniform adjustments and 
one for direct minimum adjustments. In the special case where a unit has no observed value at all, the 
minimum adjustment approach would lead to imputation of all the donor values without any adjustment, 
whereas the most-uniform adjustments are apparently not well defined since e.g. any global proportional 
adjustment of the donor record minimizes the empirical-variance loss function above. In this sense the 
generalized ratio adjustments is a genuine partial imputation method, because some constraints towards 
observed values are necessary in order to identify a unique solution. In practice, this is hardly a problem 
for donor imputation, because it is always possible to turn a unit imputation problem into a partial one, by 
incorporating the information for donor identification as part of the data vector to be dealt with. More 
specifically, let x  be the statistical variables of interest as above. Let z  contain the variables that are 
used for donor identification, which may or may not contain variables that are subjected to missing, but 
must contain some variables that are always known, because otherwise a donor may not be identifiable. 
Let )z,x(  be the combined vector of variables, with possible overlap between x  and z , which must be 
‘observed’ for the variables that are always known for donor identification. Regardless of whether these 
values actually match between the donor and the recipient, every instance of unit imputation of x  can 
now be treated as an instance of partial imputation of )z,x( . In this way unit imputation without 
adjustment becomes a special case of partial imputation, which can be motivated in cases where the 
donor and the recipient exactly match on all the values used for donor identification. 
 
V. Example revisited 
 
34. The different methods (LS, WLS and KL) have been applied to the example record of section II. 
For the WLS method we used as weights the inverse of the x0-values so that the relative differences 
between x and x0 are minimized and the adjustments are proportional to the size of the x0-values. For this 
choice of weights, the KL- and WLS-methods lead to results that are equal up to the first decimal. The 
results of the different methods, for both response patterns in Table 1, are given in Table 2. The observed 
values that are treated as fixed are shown in bold, the (other) imputed values are adjustable. 
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35. For both response patterns, the LS adjustment procedure leads to one negative value for Turnover 
other, which is not allowed for this variable. Therefore the LS-procedure was run again with a non-
negativity constraint added for the variable Turnover other. This results simply in a zero for that variable 
and a value of 950 for Turnover main to ensure that Turnover = Turnover main + Turnover other. 
Without the non-negativity constraint, the LS-results clearly show that for variables that are part of the 
same constraints (in this case the pairs of variables  x3, x4 and x6, x7. that are both appearing in one 
constraint only), the adjustments are equal: -40 for x3, x4  and -16 for x6, x7. Total costs (x8) is part of two 
constraints and therefore the total adjustment to this variable consists of two additive components. One 
component to adjust to the constraint a1:x1 - x5 + x8 = 0 (Profit = Turnover – Total Costs) and one 
component to adjust to.a3: x8 - x6 - x7 = 0 (Total Costs = Wages + Other costs). For response pattern 1, 
the first component is minus 48 - which is also the single adjustment component for Profit - and the 
second component is 16 – which is also the single adjustment component for Wages and Other costs 
(with opposite sign). These two components add up to the adjustment of -32. 
 
Table 2. Example business record and adjusted values. 

Response pattern 1 Response pattern 2 Vari-
ab
le 

Name 
Imputed  
Unadj. 

LS   WLS/
KL 

Gen. 
Rat
io 

Imputed 
Una
dj. 

LS  WLS/
KL  

Gen. 
Rat
io  

x1 Profit 330 282 291 304 330 260 249 239
x2 Employees 20 20 20 18 25 25 25 25
x3 Turnover main 1000 960 922 922 1000 960 922 921
x4 Turnover other  30 -10 28 28 30 -10 28 29
x5 Turnover 950 950 950 950 950 950 950 950
x6 Wages 500 484 470 461 550 550 550 550
x7 Other costs 200 184 188 184 200 140 151 161
x8 Total costs 700 668 658 646 700 690 701 711
Imputed Unadj.  = Imputed unadjusted values. 
LS = adjustred values according to the LS criterion. 
WLS/KL = adjusted values according to the WLS or KL criterion. 
Gen. Ratio = adjusted values with the Generalized Ratio method. 
 
36. The results for the WLS/KL solution show that for this weighting scheme the adjustments are 
larger, in absolute value, for large values of the imputed variables than for smaller ones. In particular, the 
adjustment to Turnover other is only -2.3 - so that no negative adjusted value results in this case - 
whereas the adjustment to Turnover main is 77.7. The multiplicative nature of these adjustments (as KL-
type adjustments) also clearly shows since the adjustment factor for both these variables is 0.92 (for both 
response patterns). The adjustment factor for Wages and Other costs in response pattern 1 is also equal 
(to 0.94) because these variables are in the same single constraint and so the ratio between these variables 
is unaffected by this adjustment. However the ratio of each of these variables to Total Costs is not 
unaffected because Total Costs has a different sign in the constraint a3 and, moreover, Total Costs is also 
part of constraint a1 so that it is subject to two adjustment factors. 
 
37. As expected, the generalized ratio adjustments reduce to a global proportional adjustment of all 
the imputed values by a ratio of 0.922 (=950/1030) for response pattern 1, including the variable 
Employee. This is a main difference from the minimum-adjustment approaches that are based on 
decomposable loss functions. For response pattern 2, the generalized ratio adjustments are closer to the 
WLS/KL solution. The empirical variance of the multiplicative factors (i.e. proportional to the loss 
function ∆) is 0.0270 by the generalized ratio adjustments, it is 0.0276 for the WLS/KL solution, but is 
increased to 0.1434 for the LS solution. The relative sum of squared changes for all the variables, i.e. 
twice the loss function for the WLS solution, is 50.6 for the WLS/KL solution, it is 51.6 for the 
generalized ratio adjustment, and is increased to 78.0 for the LS solution. Finally, the un-weighted sum of 
squared change, i.e. twice the loss function for the LS solution, is 20925 for the LS solution, it is 23976 
for the WLS/KL solution and 25090 for the generalized ratio adjustment. In terms all the three loss 
functions, therefore, the generalized ratio adjustments are closer to the WLS/KL solution.   
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VI. Conclusion 
 
38. Imputation is generally used as a method to compensate for partially missing values in many 
surveys. Often, especially in business surveys, the data have to satisfy many carefully specified edit-rules, 
derived from logical relations or accounting equations. Many imputation methods will not ensure that 
these edit-rules are satisfied and, as a consequence, inconsistencies in the imputed micro-data will arise. 
Using the information from the edit-rules to adjust the imputed records such that they conform to these 
edit-rules will often enhance the data quality and will assure the consistency between estimates of target 
parameters at any level of aggregation. 
 
39. In this paper we have formulated an optimization approach to this adjustment problem. Two 
variations of this approach have been considered. The first one seeks to minimize the adjustments needed 
to ensure consistency. In this approach only variables that appear in edit-rules will be adjusted because 
other variables will not cause inconsistency problems. The second is called the “generalized ratio” 
approach. In this approach all imputed values are adjusted and the adjustments are as uniform across 
variables as possible. The inconsistency is seen as an indication that there are systematic differences 
between the donor values and the observed values and it is therefore plausible to adjust all imputed 
variables. 
 
40. The optimization approach to the inconsistency problem provides a general methodology that 
extends beyond the traditional single-constraint adjustment methods such as prorating. This approach 
handles all constraints simultaneously and, if variables appear in more than one constraint then they are 
adjusted according to all of them. Besides being an optimal method in the sense according to the chosen 
distance metric or loss function, this simultaneous approach also has the practical advantage that there is 
no need to specify the order in which the constraints are to be handled.  
 
41. For the minimum adjustment approach several distance metrics have been analysed. It is shown 
that (weighted) least-squares loss leads to additive adjustments and that minimizing the Kullback-Leibler 
information criterion (KL) leads to multiplicative adjustments. It is also shown that for a specific choice 
of weights the weighted least-squares solution is an approximation to the KL-solution. 
 
42. In most cases we expect that multiplicative adjustments obtained by the minimum adjustment 
approach and the generalized ratio adjustments to yield similar results. The main difference seems to be 
the following. The minimum adjustment solution can be decomposed into the adjustments that 
correspond to each relevant constraint in a straight-forward manner. However, the same decomposability 
also means that special care needs to be given to the unconstrained (or isolated) variables in the data set. 
The generalized-ratio adjustments can be motivated as a generalization of the global ratio-adjusted 
imputation, which implicitly achieves the effects of corresponding ratio-model-like statistical 
assumptions, including the isolated variables, which can be practical in a production setting. 
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