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I. INTRODUCTION

1. The multivariate aspect of the data collected in surveys makes the task of outlier identification
particularly challenging. The outliers can be completely hidden in one or two dimensional views of the
data. This underlines that univariate outlier detection methods are useless, although they are usually
favored because of their simplicity. In a multivariate set-up the outlyingness of the observations can
be measured by the Mahalanobis distance which is based on location and scatter estimates of the data
set. In order to avoid the masking effect, robust estimates of these parameters are called for, even
more, they must possess a positive breakdown point. In contrast to univariate outliers, multivariate
outliers are not necessarily extreme along a single coordinate. They could deviate from the multivariate
structure formed by the majority of the observations. To illustrate this we will consider the well-known
bushfire data set which was used by Campbell [1989] to locate bushfire scars and was studied in detail
by Maronna and Yohai [1995]. It is available from the R package robustbase and is a complete data set
consisting of 38 observations in 5 dimensions. In the left panel of Figure 1 a scatter-plot of the variables
V2 and V3 is shown which reveals most of the outliers - the two clusters 33-38 and 7-11. The estimated
central location of each variable is indicated by dashed-dotted lines and their intersection represents
the multivariate centroid of the data. The dotted lines are at the 2nd and 98th empirical percentiles for
the individual variables. A univariate outlier detection would declare as candidates the observations
falling outside the rectangle visualized with bold dotted lines. Such a procedure would ignore the
elliptical shape of the bivariate data. The bivariate data structure can be visualized by Mahalanobis
distances, which depend on the center and the covariance (see Equation (1) below). Certain quantiles
(e.g. 0.25, 0.50, 0.75 and 0.98) will result in tolerance ellipses of the corresponding size. It is, however,
crucial how location and covariance are estimated for this purpose. Both the univariate and the
multivariate procedures illustrated in the left panel of Figure 1 are based on classical estimates of
location and covariance and therefore they fail to identify the outliers in the data. The right panel
of Figure 1 shows the same picture but robust estimates of location and covariance are used (here we
used the MCD estimator, see below). All outliers lie clearly outside the ellipse corresponding to the
0.98th quantile.
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Figure 1. Example of multivariate outliers: the variables V2 and V3 of the bushfire
data set. Dashed-dotted lines mark the centers of the variables, and ellipses represent
the 0.25, 0.50, 0.75 and 0.98 quantiles of the Mahalanobis distances. The bold dotted
lines are the 2nd and 98th empirical percentiles of the individual variables. In the left
panel the sample mean and covariance matrix are used while the right panel is based
on a robust alternative (Minimum Covariance Determinant).

2. Further challenges in survey data can be missing values and semi-continuous variables, to
name some of them which are probably the main reasons for not applying the well known high-
breakdown point estimators. A review of the available multivariate outlier detection methods which
can cope with incomplete data was presented in Todorov et al. [2011]. In a simulation study, where
a subset of the Austrian Structural Business Statistics was simulated, the authors compared several
approaches. Robust methods based on the Minimum Covariance Determinant (MCD) estimator, S-
estimators and OGK-estimator as well as BACON-BEM were shown to provide the best results in
finding the outliers. The routine use of robust methods in a wide area of application domains including
analysis of survey data is unthinkable without the computational power of today’s personal computers
and the availability of ready to use implementations of the algorithms. The freely available statistical
software R has gained importance not only in the academic science but also in many other applied
fields. The R repository CRAN includes the latest developments of statistical methods in the form of
documented functions and example data sets, packaged in a unified way and ready to be installed and
used. We will consider the package VIM for exploring the mechanism generating the missing values is
with innovative visualization tools [see Templ et al., 2009] and the package rrcovNA [Todorov, 2011]
providing a computational platform for robust multivariate analysis in R with incomplete data. The
multivariate outlier detection methods will be illustrated on well known literature data sets.

3. The rest of the paper is organized as follows. Section II facilitates the quick start by an exam-
ple session giving a brief overview of the package rrcovNA. In Section III the general outlier detection
framework is presented, the available algorithms are briefly described and their applicability to incom-
plete data is discussed. Section IV presents the design approach and implementation details of the
package rrcovNA and in Section V the visualization and diagnostic tools of the package are presented.
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Section VI presents the availability of the software and Section VII concludes with discussion and
outline of the future work.

II. EXAMPLE SESSION

4. In this section we will introduce the base functionalities provided in the package for analysis
of incomplete data rrcovNA by an example session. First of all we have to load the package rrcovNA

which will cause all necessary packages to be loaded too. The framework includes example data sets
but here we will load only those which will be used throughout the following examples. For the rest
of the paper it will be assumed that the package has been loaded already.

R> library("rrcovNA")

Scalable Robust Estimators with High Breakdown Point (version 1.1-00)

Scalable Robust Estimators with High Breakdown Point for

Incomplete Data (version 0.4-00)

R> data("bush10")

5. Most of the multivariate statistical methods are based on estimates of multivariate location
and covariance, therefore these estimates play a central role in the framework. We will start with
computing the robust minimum covariance determinant estimate for the data set bush10 included
in the package rrcovNA. After computing its robust location and covariance matrix using the MCD
method implemented in the function CovNAMcd() we can print the results by calling the default
show() method on the returned object mcd.Additional summary information can be displayed by the
summary() method. The standard output contains the robust estimates of location and covariance.
The summary output (not shown here) contains additionally the eigenvalues of the covariance matrix
and the robust distances of the data items (Mahalanobis type distances computed with the robust
location and covariance instead of the sample ones).

R> mcd <- CovNAMcd(bush10)

R> mcd

Call:

CovNAMcd(x = bush10)

-> Method: Minimum Covariance Determinant Estimator for incomplete data.

Robust Estimate of Location:

V1 V2 V3 V4 V5

109.5 149.5 257.9 215.0 276.9

Robust Estimate of Covariance:

V1 V2 V3 V4 V5

V1 697.6 489.3 -3305.1 -671.4 -550.5

V2 489.3 424.5 -1889.0 -333.5 -289.5

V3 -3305.1 -1889.0 18930.9 4354.2 3456.4

V4 -671.4 -333.5 4354.2 1100.1 856.0

V5 -550.5 -289.5 3456.4 856.0 671.7

R> summary(mcd)

R> plot(mcd)
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Figure 2. Example plot of the robust against classical distances for the modified
bushfire data set (including missing values).

6. Now we will show one of the available plots by calling the plot() method—in Figure 2 the
Distance-Distance plot introduced by Rousseeuw and van Zomeren [1990] is presented, which plots the
robust distances versus the classical Mahalanobis distances and allows to classify the observations and
identify the potential outliers. The observations containing missing values are shown in a different
color. The description of this plot as well as examples of more graphical displays based on the
covariance structure will be shown in Section V. Apart from the demonstrated MCD method the
package provides many other robust estimators of multivariate location and covariance for incomplete
data. It is important to note that one will get the output and the graphs in the same format, whatever
estimation method was used. For example the following code lines will compute the S estimates for
the same data set and provide the standard and extended output (not shown here).

R> est <- CovNASest(bush10, method = "bisquare")

R> est

R> summary(est)

Nevertheless, the variety of methods could pose a serious hurdle for the novice and could be quite
tedious even for the experienced user. Therefore a shortcut is provided too—the function CovNARo-

bust() can be called with a parameter set specifying any of the available estimation methods, but if
this parameter set is omitted the function will decide on the basis of the data size which method to
use. As we see in the example below, in this case it selects the Stahel-Donoho estimates. For details
and further examples see Section IV.

R> est <- CovNARobust(bush10)

R> est

Call:

CovSde(x = x, control = obj)
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-> Method: Stahel-Donoho estimator

Robust Estimate of Location:

V1 V2 V3 V4 V5

103.7 147.1 292.9 223.1 283.3

Robust Estimate of Covariance:

V1 V2 V3 V4 V5

V1 905.2 749.9 -4660.2 -1206.0 -951.9

V2 749.9 708.1 -3482.7 -882.0 -692.6

V3 -4660.2 -3482.7 27046.7 7201.0 5719.6

V4 -1206.0 -882.0 7201.0 1966.0 1552.6

V5 -951.9 -692.6 5719.6 1552.6 1235.7

III. FUNCTIONS FOR OUTLIER DETECTION

7. General principles. A general framework for multivariate outlier identification in a p-dimensional
data set X = (x1, . . . ,xn) is to compute some measure of the distance of a particular data point from
the center of the data and declare as outliers those points which are too far away from the center. Usu-
ally, as a measure of “outlyingness” for a data point xi, i = 1, . . . , n, a robust version of the (squared)
Mahalanobis distance RD2

i is used, computed relative to high breakdown point robust estimates of
location T and covariance C of the data set X:

RD2
i = (xi − T )tC−1(xi − T ) (1)

The most common estimators of multivariate location and scatter are the sample mean x̄ and the
sample covariance matrix S, i.e. the corresponding ML estimates (when the data follow a normal
distribution). These estimates are optimal if the data come from a multivariate normal distribution
but are extremely sensitive to the presence of even a few outliers in the data. In the last several
decades much effort was devoted to the development of affine equivariant estimators possessing a high
breakdown point. The most widely used estimators of this type are the Minimum Covariance De-
terminant (MCD) estimator and the Minimum Volume Ellipsoid (MVE) estimator, S-estimators and
the Stahel-Donoho estimator. These estimators can be configured in such a way as to achieve the
theoretically maximal possible breakdown point of 50% which gives them the ability to detect outliers
even if their number is as much as almost half of the sample size. If we give up the requirement for
affine equivariance, estimators like the orthogonalized Gnanadesikan-Kettenring (OGK) estimator are
available and the reward is an extreme gain in speed. For definitions, algorithms and references to the
original papers it is suitable to use Maronna et al. [2006]. Most of these methods are implemented
in the R statistical environment [R Development Core Team, 2009] and are available in the object-
oriented framework for robust multivariate analysis [Todorov and Filzmoser, 2009].

After having found reliable estimates for the location and covariance matrix of the data set, the
second issue is to determine how large the robust distances should be in order to declare a point an
outlier. The usual cutoff value is a quantile of the χ2 distribution, like D0 = χ2

p(0.975). The reason is
that if X follows a multivariate normal distribution, the squared Mahalanobis distances based on the
sample mean x̄ and sample covariance matrix S follow χ2

p distribution. This will no more be valid if
robust estimators are applied and/or if the data have other than multivariate normal distribution. In
Maronna and Zamar [2002] it was proposed to use a transformation of the cutoff value which should
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help the distribution of the squared robust distances RD2
i to resemble χ2 for non-normal original data:

D0 =
χ2
p(0.975)med(RD2

1, . . . , RD
2
n)

χ2
p(0.5)

. (2)

A drawback of all so far considered methods is that they work only with complete data which is not
a usual case when dealing with sample surveys. In the next subsections we describe and introduce
methods that are able to cope with missing values.

8. Robustifying the EM algorithm. Little and Smith [1987] were the first to propose a robust
estimator for incomplete data by replacing the MLE in the M-step of the EM algorithm [see Dempster
et al., 1977] by an estimator belonging to the general class of M-estimates and called this procedure
ER-estimator. They suggested to use as a starting point for the ER algorithm ML estimation where
the missing values were replaced by the median of the corresponding observed data. Unfortunately,
the breakdown point of this estimator, as of all general M-estimates cannot be higher than 1/(p+ 1)
[see for example Maronna et al., 2006, p. 186] which renders it unusable for the purpose of outlier
detection.

9. Normal imputation followed by high-BP estimation. A straightforward strategy for adapting
estimators of location and covariance to work with missing data is to perform one preliminary step
of imputation and then run any of the above described algorithms, like for example MCD, OGK, S
and Stahel-Donoho (SDE) on the complete data. Many different methods for imputation have been
developed over the last few decades and here we will consider a likelihood-based approach such as
the before mentioned expectation maximization (EM) imputation method [Dempster et al., 1977]
assuming the underlying model for the observed data is Gaussian. This method is able to deal with
MCAR and MAR missing values mechanism. The next step after estimating reliably the location
T and covariance matrix C is to compute the robust distances from the incomplete data. For this
purpose we have to adapt Equation (1) to use only the observed values in each observation xi and
then to scale up the obtained distance. We rearrange the variables if necessary and partition the
observation xi into xi = (xoi,xmi) where xoi denotes the observed part and xmi - the missing part of
the observation. Similarly, the location and covariance estimates are partitioned, so that we have T oi

and Coi as the parts of T and C which correspond to the observed part of xi. Then

RD2
oi = (xoi − T oi)

tC−1
oi (xoi − T oi) (3)

is the squared robust distance computed only from the observed part of xi. If xi is uncontaminated,
follow a multivariate normal distribution, and if the missing values are missing at random, then the
squared robust distance given by Equation (3) is asymptotically distributed as χ2

pi where pi is the
number of observed variables in xi [see Little and Smith, 1987].

The MCD estimator is not very efficient at normal models, especially if h is selected so that maximal
breakdown point (BP) is achieved [Croux and Haesbroeck, 1999], and the same is valid for the OGK
estimator [Maronna et al., 2006, p. 193, 207]. To overcome the low efficiency of these estimators,
a reweighted version can be used. For this purpose a weight wi is assigned to each observation xi,
defined as wi = 1 if RD2

oi ≤ χ2
pi,0.975

and wi = 0 otherwise, relative to the raw estimates (T ,C) and
using Equation (3). Then the reweighted estimates are computed as

TR =
1

ν

n∑
i=1

wixi,

CR =
1

ν − 1

n∑
i=1

wi(xi − TR)(xi − TR)t, (4)
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where ν is the sum of the weights, ν =
∑n

i=1wi. Since the underlying data matrix is incomplete, the
EM algorithm is used to compute TR and CR. These reweighted estimates (TR,CR) which have the
same breakdown point as the initial (raw) estimates but better statistical efficiency are computed and
used by default for the methods MCD and OGK.

10. Robust sequential imputation followed by high-BP estimation. Since we assume that outliers
are present in the data we could expect an improvement of the performance of the previously described
methods if the non-robust Gaussian imputation is substituted by a robust imputation technique that
can handle simultaneously missing and outlying values. One such method was proposed by Vanden
Branden and Verboven [2009] (RSEQ), extending the sequential imputation technique (SEQimpute) of
Verboven et al. [2007] by robustifying some of its crucial steps. SEQimpute starts from a complete sub-
set of the data set Xc and estimates sequentially the missing values in an incomplete observation, say
x∗, by minimizing the determinant of the covariance of the augmented data matrix X∗ = [Xc; (x∗)t].
Since SEQimpute uses the sample mean and covariance matrix it will be vulnerable to the influence
of outliers and it is improved by plugging in robust estimators of location and scatter. One possi-
ble solution is to use the outlyingness measure as proposed by Stahel [1981] and Donoho [1982] and
successfully used for outlier identification in Hubert et al. [2005]. We can compute the outlyingness
measure for the complete observations only but once an incomplete observation is imputed (sequen-
tially) we could compute the outlyingness measure for it too and use it to decide if this observation is
an outlier or not. If the outlyingness measure does not exceed a predefined threshold the observation
is included in the further steps of the algorithm. After obtaining a complete data set we proceed by
applying a high breakdown point estimation method in the same way as described in the previous
section.

11. Robust Principal Components for incomplete data. Principal component analysis (PCA) is
a widely used technique for dimension reduction achieved by finding a smaller number k of linear
combinations of the originally observed p variables and retaining most of the variability of the data.
These new variables, referred to as principal components are uncorrelated with each other and account
for decreasing amount of the total variance, i.e. the first principal component explains the maximum
variance in the data, the second principal component explains the maximum variance in the data that
has not been explained by the first principal component and so on. Dimension reduction by PCA is
mainly used for visualization of multivariate data by scatter plots (in a lower dimensional space) or
transformation of highly correlated variables into a smaller set of uncorrelated variables which can
be used by other methods (e.g. multiple or multivariate regression). The classical approach to PCA
measures the variability through the empirical variance and is essentially based on computation of
eigenvalues and eigenvectors of the sample covariance or correlation matrix. Therefore the results may
be extremely sensitive to the presence of even a few atypical observations in the data. The outliers
could artificially increase the variance in an otherwise uninformative direction and this direction will
be determined as a PC direction. PCA was probably the first multivariate technique subjected to
robustification, either by simply computing the eigenvalues and eigenvectors of a robust estimate of
the covariance matrix or directly by estimating each principal component in a robust manner. Different
approaches to robust PCA are presented in Todorov and Filzmoser [2009] and examples are given how
these robust analysis can be carried out in R. Details about the methods and algorithms can be found
in the corresponding references.
Projecting the data into a lower dimensional space one could obtain an estimate of location and
covariance matrix and then use them for outlier detection as described in the beginning of this section
or alternatively one could directly compute the Mahalanobis distances of the project observations to
the projection of the center of the data [see for example Filzmoser et al., 2008].
If the data are incomplete as it is usual in business surveys the standard classical or robust PCA
cannot be applied. Walczak and Massart [2001] proposed to use the EM approach for dealing with
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missing data in PCA and Serneels and Verdonck [2008] extended it to robust PCA. Most of the known
methods for robust PCA are implemented in the package rrcov [see Todorov and Filzmoser, 2009]
and the corresponding versions for dealing with incomplete data can be found in the package rrcovNA.
More details about the implementation and examples will be given in Section IV.

12. Handling of semi-continuous variables. Often in establishment and other surveys variables
occur, which have valid values either in a given interval or are zero. These variables must be treated in
the same way as regular variables, except that a value of zero is also accepted. Of course there could
be a minimum bigger than zero on the variable and the number of zero valued observations could
be larger then half of the total number. Such variables are called semi-continuous variables and it is
obvious that none of the methods discussed so far can handle such type of variables. Recently Meraner
[2010] proposed a modification for the OGK algorithm which can handle semi-continuous variables.
This approach takes advantage of the pairwise character of the algorithm which allows to “skip” the
zeros in the actual computation of robust location and covariance matrix estimates and then use them
for outlier detection.

IV. OBJECT MODEL AND IMPLEMENTATION DETAILS

13. The object model for the S4 classes and methods implementing the different multivariate
location and scatter estimators for incomplete data follows the proposed class hierarchy given in
Todorov and Filzmoser [2009]. The abstract class CovNA serves as a base class for deriving all classes
representing classical and robust location and scatter estimation methods. It defines the common
slots and the corresponding accessor methods, provides implementation for the general methods like
show(), plot() and summary(). The slots of CovNA hold some input or default parameters as well as
the results of the computations: the location, the covariance matrix and the distances. The show()

method presents brief results of the computations and the summary() method returns an object of
class SummaryCovNA which has its own show() method. These slots and methods are defined and
documented only once in this base class and can be used by all derived classes. Whenever new data
(slots) or functionality (methods) are necessary, they can be defined or redefined in the particular
class.

14. The classical location and scatter estimates for incomplete data are represented by the class
CovNAClassic which inherits directly from CovNA (and uses all slots and methods defined there). The
function CovNAClassic() serves as a constructor (generating function) of the class. It can be called
by providing a data frame or matrix. As already demonstrated in Section II the methods show() and
summary() present the results of the computations. The plot() method draws different diagnostic
plots which are shown in one of the next sections. The accessor functions like getCenter(), getCov(),
etc. are used to access the corresponding slots. Another abstract class, CovNARobust is derived
from CovNA, which serves as a base class for all robust location and scatter estimators. The classes
representing robust estimators like CovNAMcd, CovNASest, etc. are derived from CovNARobust and
provide implementation for the corresponding methods. Each of the constructor functions CovNAMcd(),
CovNAOgk() and CovNASest() performs the necessary computations and returns an object of the class
containing the results. Similarly as the CovNAClassic() function, these functions can be called either
with a data frame or a numeric matrix.
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A. GENERALIZED ESTIMATION FUNCTION

15. The provided variety of estimation methods for incomplete data, each of them with different
parameters as well as the object models described earlier in this section can be overwhelming for the
user, especially for the novice who does not care much about the technical implementation of the
framework. Therefore one function is provided which gives a quick access to the robust estimates of
location and covariance matrix for incomplete data. The class CovNARobust is abstract (defined as
VIRTUAL) and no objects of it can be created but any of the classes derived from CovNARobust, such
as CovNAMcd or CovNAOgk, can act as an object of class CovNARobust. The function CovNARobust()

which is technically not a constructor function can return an object of any of the classes derived from
CovNARobust according to the user request. This request can be specified in one of three forms:

• If only a data frame or matrix is provided and the control parameter is omitted, the function
decides which estimate to apply according to the size of the problem at hand. If there are
less than 1000 observations and less than 10 variables or less than 5000 observations and less
than 5 variables, Stahel-Donoho estimator will be used. Otherwise, if there are less than 50000
observations, either bisquare S estimates (in case of less than 10 variables) or Rocke type S es-
timates (for 10 to 20 variables) will be used. In both cases the S iteration starts at the initial
MVE estimate. And finally, if there are more than 50000 observations and/or more than 20
variables the Orthogonalized Quadrant Correlation estimator (function CovNAOgk() with the
corresponding parameters) is used. This is illustrated by the following example:

R> genNAData <- function(n, ncol) {

+ x <- rnorm(n)

+ x[sample(1:n, size = 0.1 * n)] <- NA

+ matrix(x, ncol = ncol)

+ }

R> getMeth(CovNARobust(genNAData(n = 40, ncol = 2)))

[1] "Stahel-Donoho estimator"

R> getMeth(CovNARobust(genNAData(n = 1600, ncol = 8)))

[1] "Stahel-Donoho estimator"

R> getMeth(CovNARobust(genNAData(n = 20000, ncol = 10)))

[1] "S-estimates: Rocke type"

R> getMeth(CovNARobust(genNAData(n = 2e+05, ncol = 2)))

[1] "Orthogonalized Gnanadesikan-Kettenring Estimator"

• The simplest way to choose an estimator is to provide a character string with the name of the
estimator—one of "mcd", "ogk", "s-fast", "s-rocke", etc.

R> getMeth(CovNARobust(matrix(rnorm(40), ncol = 2), control = "rocke"))

[1] "S-estimates: Rocke type"

• If it is necessary to specify also some estimation parameters, the user can create a control
object (derived from CovControl) and pass it to the function together with the data. For
example to compute the OGK estimator using the median absolute deviation (MAD) as a
scale estimate and the quadrant correlation (QC) as a pairwise correlation estimate we create
a control object ctrl passing the parameters s_mad and s_qc to the constructor function and
then call CovNARobust with this object.
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R> data("toxicity")

R> ctrl <- CovControlOgk(smrob = "s_mad", svrob = "qc")

R> est <- CovNARobust(toxicity, ctrl)

For more details see the description of the function CovRobust() for complete data in Todorov and
Filzmoser [2009].

B. ROBUST PCA FOR INCOMPLETE DATA

16. The object model for the S4 classes and methods implementing the principal component
analysis methods follows the proposed class hierarchy given in Todorov and Filzmoser [2009] but for
simplicity the number of classes is reduced and the different estimation methods are specified by a
parameter. The abstract class PcaNA (derived from Pca in package rrcov) serves as a base class
for deriving all classes representing classical and robust principal components analysis methods. It
defines the common slots and the corresponding accessor methods, provides implementation for the
general methods like show(), plot(), summary() and predict(). The slots of PcaNA hold some
input or default parameters like the requested number of components as well as the results of the
computations: the eigenvalues, the loadings and the scores. The show() method presents brief results
of the computations, and the predict() method projects the original or new data to the space spanned
by the principal components. It can be used either with new observations or with the scores (if no
new data are provided). The summary() method returns an object of class SummaryPca which has
its own show() method. As in the other sections of the package these slots and methods are defined
and documented only once in this base class and can be used by all derived classes. Whenever new
information (slots) or functionality (methods) are necessary, they can be defined or redefined in the
particular class.

17. Classical principal component analysis for incomplete data is represented by the class PcaNA
withe method="class" which inherits directly from Pca (and uses all slots and methods defined there).
The function PcaNA() serves as a constructor (generating function) of the class. It can be called either
by providing a data frame or matrix or a formula with no response variable, referring only to numeric
variables. Let us consider the following simple example with the data set bush10 containing missing
values. The code line

R> PcaNA(bush10, method="class")

can be rewritten as (and is equivalent to) the following code line using the formula interface

R> PcaNA(~ ., data = bush10, method="class")

The function PcaNA() with method="class" performs the standard principal components analysis
and returns an object of the class PcaNA.

R> pca <- PcaNA(~., data = bush10, method = "class")

R> pca

Call:

PcaNA(formula = ~., data = bush10, method = "class")

Standard deviations:

[1] 163.679611 27.335832 16.573119 8.417495 1.502502

Loadings:

PC1 PC2 PC3 PC4 PC5

V1 -0.02659665 0.40918484 0.4023615 0.8184958 -0.005503999

V2 -0.01525114 0.90453802 -0.2930261 -0.3087768 -0.019260616
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V3 0.90576986 -0.02651191 -0.3610926 0.2202021 0.001101088

V4 0.32660506 0.07626469 0.6095852 -0.3314624 -0.637221583

V5 0.26827246 0.08865405 0.5002589 -0.2763426 0.770419481

R> summary(pca)

Call:

PcaNA(formula = ~., data = bush10, method = "class")

Importance of components:

PC1 PC2 PC3 PC4 PC5

Standard deviation 163.6796 27.3358 16.57312 8.41749 1.50250

Proportion of Variance 0.9607 0.0268 0.00985 0.00254 0.00008

Cumulative Proportion 0.9607 0.9875 0.99738 0.99992 1.00000

R> plot(pca)

The show() method displays the standard deviations of the resulting principal components, the load-
ings and the original call. The summary() method presents the importance of the calculated compo-
nents. The plot() draws a PCA diagnostic plot which is shown and described later. The accessor
functions like getLoadings(), getEigenvalues(), etc. are used to access the corresponding slots,
and predict() is used to rotate the original or new data to the space of the principle components.
The robust PCA methods are performed by supplying the corresponding parameter to the func-
tion PcaNA() and correspond to the complete data methods PcaHubert, PcaLocantore, etc. de-
rived from PcaRobust in rrcov. The constructor function PcaNA() with the corresponding para-
mater method=c("locantore", "hubert", "grid", "proj", "class", "cov") performs the nec-
essary computations and returns an object of the class containing the results. In the following example
the same data are analyzed using a projection pursuit method.

R> rpca <- PcaNA(~., data = bush10, method = "grid", k = 3)

R> rpca

Call:

PcaNA(formula = ~., data = bush10, method = "grid", k = 3)

Standard deviations:

[1] 134.503708 24.947475 4.794661

Loadings:

PC1 PC2 PC3

V1 -0.01248133 0.5058076 0.1470629

V2 -0.12643309 0.7822248 0.3153328

V3 -0.87902225 -0.2551691 0.3964164

V4 -0.35099688 0.1952972 -0.6683504

V5 -0.29661417 0.1703843 -0.5244993

V. VISUALIZATION OF THE RESULTS

18. The default plot accessed through the method plot() of class CovNARobust is the Distance-
Distance plot introduced by Rousseeuw and van Zomeren [1990]. An example of this graph, which
plots the robust distances versus the classical Mahalanobis distances is shown in Figure 2. The dashed
line represents the points for which the robust and classical distances are equal. The horizontal and

vertical lines are drawn at values x = y =
√
χ2
p,0.975. Points beyond these lines can be considered as
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outliers and are identified by their labels. All observations which have at list one missing value are
shown in red.

19. The other available plots are accessible either interactively or through the which parameter of
the plot() method. Figure 3 shows the pairwise correlations (which="pairs") computed classically
as the sample correlation coefficients (excluding the pairwise missing values) and computed robustly
by applying the Minimum Covariance Determinant (MCD) method for incomplete data. In the upper
triangle the corresponding ellipses are shown representing bivariate normal density contours with zero
mean, unit variance together with a bivariate scatter plot of the data. The observations which have
a missing value in any of the coordinates are projected on the axis and are shown in red. The lower
triangle presents classical and robust correlation coefficients. A large positive or negative correlation
is represented by an elongated ellipse with major axis oriented along the ±45 degree direction while
near to zero correlation is represented by almost circular ellipse. The differences between the classical
and robust estimates are easily seen visually.

R> mcd <- CovNAMcd(bush10)

R> plot(mcd, which = "pairs")
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Figure 3. Classical and robust correlations and scatter plot matrix with tolerance ellipses.

20. The left panel of Figure 4 shows an example of the distance plot in which robust and classical
Mahalanobis distances are shown in parallel panels. The outliers have large robust distances and are
identified by their labels. The right panel of Figure 4 shows a Quantile-Quantile comparison plot
of the robust and the classical Mahalanobis distances versus the square root of the quantiles of the
chi-squared distribution.
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Figure 4. Distance plot and Chi-square Q-Q plot of the robust and classical distances.

The next plot shown in Figure 5 presents a scatter plot of the data on which the 97.5% robust and

classical confidence ellipses are superimposed. The observations with distances larger than
√
χ2
p,0.975

are identified by their subscript. In the right panel of Figure 5 a screeplot of the ces data set is
shown, presenting the robust and classical eigenvalues.

R> data("bush10")

R> data("ces")

R> X <- bush10[, c(2, 3)]

R> usr <- par(mfrow = c(1, 2))

R> plot(CovNAMcd(X), which = "tolEllipsePlot", classic = TRUE)

R> plot(CovNAMcd(ces), which = "screeplot", classic = TRUE)

R> par(usr)

In the context of PCA Hubert et al. [2005] defined a diagnostic plot or outlier map which helps to
distinguish between the regular observations and the different types of outliers. The diagnostic plot
is based on the score distances and orthogonal distances computed for each observation. The score
distance is defined by

SDi =

√√√√ k∑
j=1

t2ij
lj
, i = 1, . . . , n, (5)

where tij are the elements of the score matrix T . It measures the distance of each observation to the
subspace spanned by the first k principal components. The orthogonal distance is defined by

ODi = ||xi −m− Pti||, i = 1, . . . , n (6)

where ti is the ith row of the score matrix T . This measure corresponds to the distance of the projection
of each observation into the space spanned by the first k principal components. The diagnostic plot
shows the score versus the orthogonal distance, and indicates with a horizontal and vertical line the
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Figure 5. Robust and classical tolerance ellipse for two selected variables (V2 and
V3) of the modified bushfire data data and robust and classical screeplot for the
Consumer Expenditure Survey data (ces data set).

cut-off values that allow to distinguish regular observations from the two types of outliers [for details,
see Hubert et al., 2005]. An example of the classical and robust diagnostic plot for the bush10 data
set is shown in Figure 6.

R> usr <- par(mfrow = c(1, 2))

R> plot(PcaNA(bush10, k = 3, method = "class"))

R> plot(PcaNA(bush10, k = 3, method = "locantore"))

R> par(usr)

VI. SOFTWARE AVAILABILITY

21. The algorithms discussed in this paper are available in the R package rrcovNA which in
turn uses the packages robustbase, rrcov and mvoutlier. These packages are available from the
Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org under the GNU General
Public License. The three algorithms from the EUREDIT project (TRC, EA and BEM), were kindly
provided by the authors and will be included in a later version of rrcovNA.

VII. CONCLUSIONS AND OUTLOOK

22. In this paper we presented several algorithms for for identifying outliers in data sets including
missing values as well as their implementation in the R package rrcovNA. While a previous article
investigated two important aspects: the computation time and the accuracy of the outlier detection
method here we focused on the practical application of the methods and the available visualization

http://CRAN.R-project.org
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Figure 6. Classical and robust diagnostic plot for the bush10 data with k = 3.

and diagnostic tools. The doc subdirectory of the package contains a vignette (user guide in PDF
format), which presents much of the material in this article in greater detail.

23. First experiments with a real live example from the African Investor Survey 2009 in the
Manufacturing Sector conducted by the United Nations Industrial Development Organization showed
promising results and we intend to apply the methods implemented in package rrcovNA as the analysis
of the survey data proceeds. As usual with business (and other) surveys the data contain many semi-
continuous variables, which motivates further improvement of the methods that could handle this type
of data distributions.
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