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L INTRODUCTION

1. Efficient editing methods are critical for the statistical offices. In the past, it was customary
to edit manually every questionnaire collected in a survey before computing aggregates. Nowadays,
exhaustive manual editing is considered inefficient, since most of the editing work has no consequences
at the aggregate level and can in fact even damage the quality of the data (see [7] and [4]).

2. Selective editing methods are strategies to select a subset of the questionnaires collected in a
survey to be subject to extensive editing. A reason why this is convenient is that it is more likely
to improve quality by editing some units than by editing some others, either because the first ones
are more suspect to have an error or because the error if it exists has probably more impact in the
aggregated data. Thus, it is reasonable to expect that a good selective editing strategy can be found
that balances two aims: (i) good quality at the aggregate level and (ii) less manual editing work.

3. This task is often done by defining a score function (SF), which is used to prioritise some units.
When several variables are collected for the same unit, different local score functions may be computed
and then, combined into a global score function. Finally, those units with score over a certain threshold
are manually edited. Thus, when designing a selective editing process it is necessary to decide: (a)
whether to use SF or not; (b) the local score functions; (¢) how to combine them into a global score
function (sum, maximum, ...); (d) the threshold.

4. Formerly, the points above were dealt with in an empirical way because of the lack of any
theoretical support. In [6], [8] and [4] some guidelines are proposed to build score functions, but they
rely in the criterion of the practitioner. In this paper, we describe a theoretical framework which, under
some assumptions, answers the questions above. For this purpose, we will formally define the concept
of selection strategy. This allows to state the problem of selective editing as an optimization problem
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in which the objective is to minimize the expected workload with the constraint that the expected
remaining error after editing the selected units is below some bound.

5. We describe the selective editing as an optimization problem in section II. The problem is
presented in two forms and we solve them is sections IIT and TV respectively. Both solutions depend
on the computation of some conditional moments of the error distribution. In section V, we show how
to compute them. Then, two practical examples are described in sections VI and VII. We conclude
with some remarks in section VIIL

IT. THE SELECTION PROBLEM

6. Let us introduce some notation,
e 7 is the true value of variable j in questionnaire i at period ¢, with i = 1,...,N and j =
L....q. . y
o 7 =z + ¢ is the observed value of variable j in questionnaire i at period t, &; being the
observation error. .
o X} = wajx? is the k-th statistic computed with the true values (X[ is computed with the

observed ones), according to the weightings wfj with k£ ranging from 1 to p.

The linearity assumption implies a loss of generality, which is nevertheless not very important in the
usual practice of statistical offices. Many statistics are in fact linear aggregates of the data. In some
other cases such as indices, they are ratios whose denominator depends on past values that can be
considered as constant when editing current values. When the statistic is nonlinear, the applicability
of the method depends on the accuracy of a first-order Taylor expansion in {z;’}.

7. Let (92, F, P) be a probability space. We assume that xij and sij are random variables with
respect to that space. There can be other random variables relevant to the selection process. Among

them, some are known at the moment of the selection, such as Z;’, 3 with s < t or even variables from

other surveys. The assumption that z¢ is known is equivalent to assume that when editing period t,
the data from previous periods have been edited enough and does not contain errors. We will denote
by G; the o—field generated by all the information available up to time ¢. In order to avoid heavy
notation, we omit the subscript ¢ when no ambiguity arises.

8. Our aim is to find a good selection strategy. A selective editing strategy should indicate for
any ¢ whether questionnaire ¢ will be edited or not and this has to be decided using the information
available. In fact, we will allow the strategy not to determine precisely whether the unit is edited but
only with a certain probability.

Definition 1. A selection strategy (SS) with respect to Gy is a Gi-measurable random vector R =
(Ry,...,RN)T such that R; € [0,1].

We denote by S(G;) the set of all the SS with respect to G;. The interpretation of r is that questionnaire
i is edited with probability 1 — R;. To allow 0 < R; < 1 instead of the more restrictive R; € {0,1}
is theoretically and practically convenient because then, the set of strategies is convex and techniques
of convex optimization can be used. Moreover, it could happen that the optimal value over this
generalized space were better than the restricted case (just as in hypothesis testing a randomized test
can have a greater power than any nonrandomized one). If for unit i, R; € (0,1), then the unit is
effectively edited depending on whether X! < R;, where X! is a random variable distributed uniformly
in the interval [0,1], and independent from every other variable in our framework. We denote by R;
the indicator variable of the event X} < R; and R = (Ry,...,Ry). If a SS satisfies R; € {0,1} ass.,



then R = R a.s. and we say that R is integer. The set of integer SS is denoted by S1(Gt). In our case
study, the solutions obtained are integer or approximately integer.

9. It is also convenient to have a formal definition of a Score Function.

Definition 2. Let R be a SS, § = (61,...,0n)T a random vector and © € R, such that R; = 1 if and
only if 9; < ©. Then, we say that § is a Score Function generating R with threshold ©.

10. In order to formally pose the problem, we will assume that after manual editing, the true
values of a questionnaire are obtained. Thus, we have to consider only the observed and true values.
We define the edited statistic X*(R) as the one calculated with the values obtained after editing

according to a certain choice. We can write X*(R) = wa] (2 + Riel?).

11. The quality of X*(R) has to be measured according to a loss function. In this paper, we

consider only the Squared Error, (X*(R) — X*)2. This choice makes easier the theoretical analysis. It

remains for future research to adapt the method for other loss functions. The value of the loss function
can be written as

(XH(R) = X¥)? =) " efeliRiRar, (1)

i

where ¢f = > w{?‘jz—:? or, in matrix form, as (X¥(R) — X*)2 = R'EFR, with EF = {EF

4,3/

}m/ and
Efz-, = efef,. For some positive constants ez > 0, we can now state the problem of selection as an
optimization problem.

[Po] maxp E[1TR]
st. ReS(G),ERTEFR| <el k=1,...,p.
12. In section IV we will see the solution to this problem. The vector in the cost function can

be replaced for another one in case the editing work were considered different among units (e.g., if we
want to reduce the burden for some respondents; this possibility is not dealt with in this paper).

13. Let us now analyse the expression (1). We can decompose it as
(XH(R) = X*)? =Y ()’ Ri+ ) ebe Rk (2)
i i’

The first term in the RHS of (2) accounts for the individual impact of each error independently of its
sign. In the second term the products are negative when the factors have different signs. Therefore, in
order to reduce the total error, a strategy will be better if it tends to leave unedited those couples of
units with different signs. The nonlinearity of the second term makes the calculations more involved.
For that reason, we will also study the problem neglecting the second term.

[PL] maxp E[1TR]
st. ReS(G),ED*R|<ek=1,...,p,

where D* = (D¥, ... DK)T, DF = (k)2
14. This problem is easier than Pg because the constraints are linear. In section IIT we will see
that the solution is given by a certain score function. Since there is no theoretical justification for
neglecting the quadratic terms, the SS solution of the linear problem has to be empirically justified by
the results obtained with real data.



I1I. SOLUTION TO THE LINEAR CASE

15. In [1], it is shown that [Pr] is equivalent to
[P;] maxp E[1TR]
st. ReS(G),E[A*R| < e k=1,...,p,
where A¥ = E[D¥|G;] and that under not too restrictive assumptions, if A is a solution to the dual
problem,
[D] miny>o  ¢(A)
with ¢(A\) = maxg L(R, )\), then R = argmax L(-, \) is a solution to [Pr]. Since A¥(w) is known, the

maximization of £ with respect to R boils down to solving the deterministic problem

[Pp(\,w)] max, 1Tr— Z Ak (AF(w)r — €2)
k

st. 1 €l0,1],
and setting R(w) = r the solution to [Pp(\, w)].

16. By applying the Karush-Kuhn—Tucker conditions (see [2]), we get a solution to [Pp(A,w)]
given by
r‘_{ 1if ATA; <1 )
Tl 0 if ATA > 1,

where A; = (A}, ..., AP)T. The case ATA; = 1 is a zero-probability event when dealing with quanti-
tative data, given that the distribution of A; should be continuous. Then, we arrive to,

Proposition 1. The solution to [Pr] is the SS generated by the Score Function 6; = AT A; with
threshold equal to 1.

17. We describe in section V how to use a model for the practical computation of A¥. In order
to estimate the dual function p(A) = E[L(Ry, \,)] we replace expectation for the mean value over a
sample. Thus, we can seek the optimum of $(\) = %Z?:tffl Li(r%, ). This method is known as the
sample—path optimization or sample average approximation method (SAA, see [3]). The maximization

of ¢ may be done by numerical methods.

V. SOLUTION TO THE QUADRATIC CASE

18. The way to solve the quadratic problem is similar, but we face now some further difficulties,
in particular, that the constraints are not convex. Therefore, we will replace them by some convex ones
in such a way that under some assumptions the solutions remain the same. The reader is henceforth
referred to [1] for the proofs and technical details.

19. We first need to express the constraints in a suitable form.
Lemma 1. It holds, E[RTE*R|G,] = R"T*R + (AF)T R where T* = {T'%};; and,
N Elejef|G] if i#
K 0 if =7

Unfortunately, the matrices I'* are indefinite and thus the constraints are not convex. We will overcome
this difficulty by using the following lemma.



Lemma 2. Let go be a function such that VR € S;(G),E[g2(R(w),w)] = E[g2(R(w),w)] and VR €
5(9), E[g2(R(w),w)] < E[ga(R(w),w)], and let [P})] be the problem obtained from [Pq| replacing g2 for
g2- Then, if R is a solution to [Pg] and R € S1(G), then R is a solution to [FPg).

20. We may consider at least the two following possibilities: (i) g2(r,w) = r7¥F(w)r, where
ij = E[efeﬂgt} and (i) go(r,w) = rT M*(w)r + (v¥(w))Tr, where M{j = mfm;“, m!F = Ele¥|G],
vF = V[eF|G,]. The choice (ii) can be used only under the assumption that E[efeﬂgt] = mf’mgC for

i # j and this will be the one used in our application (section VI). Lemma 2 has practical relevance
if we check that the solutions of [Ff] are integer. We show in [1] that this holds approximately in our
experiment.

21. Now, we have to solve problem [Fy)], that is, the one with the constraints E[rT Akr+ %) Tr) <
ei, where A¥ = ¥F bF = 0 or A¥ = M* V¥ = v*. Since A* are positive semidefinite, the constraints
are convex and we can also replace the original problem by the dual one as we did in the linear case.

22. Once again, the maximization of the Lagrangian function can be reduced to a deterministic
optimization problem, in this case a quadratic programming problem.
[P\ w)] max, 17r =" Xe(r" A%r + (0F)Tr — €}) (4)
k
st. 1 €]0,1]. (5)
23. An important difference with respect to the linear case is that the problem above does not

explicitly provide a Score Function generating the SS as when applying the Karush-Kuhn-Tucker
conditions in section III.

24. We describe in section V a practical method to obtain M* %% and v*. [Pp(\,w)] was easy
to solve in the linear case, but for large sizes (in our case N > 10,000), the quadratic programming
problem becomes computationally heavy if solved by traditional methods. For go defined as in (ii),
we can take advantage of the low rank of the matrix in the objective function to propose (see [1]) an
approximate method to solve it efficiently.

V. MODEL-BASED CONDITIONAL MOMENTS

25. The practical application of the results in previous sections requires a method to compute the
conditional moments of the error with respect to G;. In this section, we drop the index j to reduce
the complexity of the notation, but the results can be adapted to the case of several variables per
questionnaire.

26. Let ‘H; be a o—field generated by all the information available at time ¢ with the exception
of #. Then, G; = o (%%, H;). Let 4% = 7(z%) be a predictor computed using the information in H;, that
is a Hi-measurable random variable optimal in some way decided by the analyst. The prediction error
is denoted by & = 21 — xt. We have to make some assumptions.

Assumption 1. & and 1} are distributed as a bivariate Gaussian with zero mean, variances v? and
o? and correlation ;.

Assumption 2. ¢! = nle, where el is a Bernoulli variable that equals 1 or O with probabilities p and
1 —p and it is independent of & and ny.



Assumption 3. &, n! and €i are jointly independent of H;.

27. With these assumptions, the conditional moments of the error with respect to G; are functions
of the sole variable u; = &} — 2}, that is, the difference between the predicted and the observed values.
In the next proposition we will also drop ¢ and ¢ in order to simplify notation.

Proposition 2. Under the assumptions 1-3, it holds

o? +yov

E —

/] o2+ 12+ 2'y<71/uC (6)

221 —4?) 0% 4+ yov 2
Ele2 _ o v ( 2
£19] o2+ v2 + 2vov + o2+ v2 + 2vov wLG 0
where,
1
(= (8)

~1/2
1-p V2 (02+2v0v)
1+ p <0'2+V2+2"/O'V> eXp{ 2u2(02+u2+270u)}

VI. CASE STUDY 1: PERIODIC SURVEY WITH A SIMPLE QUESTIONNAIRE

28. In this section, we present the results of the application of the methods described in this
paper to the data of the Turnover/New Orders Survey. Monthly data from about N = 13,500 units
are collected with ¢ ranging from 1 to 57. Only two of the variables requested in the questionnaires are
considered in our study, namely, Total Turnover and Total New Orders (¢ = 2). The total Turnover
of unit j at period ¢ is zi' and Total New Orders is 2i2. These two variables are aggregated separately
to obtain the two indicators, sop=2and w), =wi =0.

29. We need a model for the data in order to apply proposition 2 and obtain the conditional
moments. Since the variables are distributed in a strongly asymmetric way, we use their logarithm
transform, y,’ = log(z}’ + m), where m is a positive constant adjusted by maximum likelihood
(m = 10°€). The conditional moments of the original variable can be recovered exactly by using
the properties of the log-normal distribution or approximately by using a first-order Taylor expansion,
yielding E[(Z}’ — ) 1G] =~ (7)) —m)?E[(5 —y;”)?|G:]. In our study, we used the approximate version.

We found that 1f z —m is replaced by an average of the last 12 values of z,, the estimate becomes
more robust against very small values of Z;” — m.

30. The model applied to the transformed variables is very simple. We assume that the variables
x, are independent across (i,7) and for any pair (i, j), we choose among the following simple models.
(1- By = as, (9)

(- B2yl =a,, (10)

(1-B%)(1 - By = a. (11)

where B is the backshift operator Bu; = u;—1 and a; are white noise processes. We obtain the residuals
a; and then select the model with the smallest squared residual mean, Zat /(T —r), where r is the
maximum lag in the model. With this model, we compute the prediction ¢, and the prediction standard
deviation v;;. The a prior: standard deviation of the observation errors and the error probability are
considered constant across units (that is possible because of the logarithm transformation). We denote
them by o; and p; with j = 1,2 and they are estimated using historical data of the survey.



31. A database is maintained with the original collected data and subsequent versions after pos-
sible corrections due to the editing work. Thus, we consider the first version of the data as observed
and the last one as true. The coefficient 7; is assumed zero. Once we have computed o;, pj, v;; and

uij, proposition 2 can be used to obtain the conditional moments and then, A*, ¥ and v*.
A, Expectation Constraints

32. We will now check that the expectation constraints in [Pr] and [Pp] are effectively satisfied.
In order to do this, for I =1,...,b with b = 20 we solve the optimization problem with the variance
bounds €2, = €2, = €? = [Sg(lfl)/(bfl))Sg(b*l)/(bfl))]g
so = 0.025 to s1 = 1.

The range of standard deviations goes from

33. The expectation of the dual function is estimated using a h—length batch of real data. For
the last 12 periods and for any [ = 1,...,b, a selection r(t,[) is obtained according the bound ei. The
average across ¢ of the remaining squared errors is thus computed as é7, = - 1;0:4;31 r(t, )T EFr(t,1).
34. We repeated these calculations for h = 1, 3,6 and 12 both using the linear and the quadratic
versions. We report the results for h = 6 in table 1 (detailed data can be found in [1]). For each [ we
present the average number of units edited, the desired bound and for k = 1,2, the quotient éx;/ey;.
In every case, there is a tendency to underestimate the error when the constraints are smaller and
to overestimate it when the bounds are larger. The quadratic method produces better results with
respect to the bounds but at the price of editing more units.

Linear Quadratic
i éu ST
el €] el n el €] n

0250 | 1.89 3.20 414.8 1.86 2.50 5784
0369 | 2.04 243 2576 1.42 1.82 4019
.0544 | 1.58 1.87 157.7 0.96 1.17 390.5
0801 | 1.10 1.25 959 1.31 1.30 2834
11821096 1.18 56.2 1.32 1.22 140.3
17421097 131 305 1.24 092 778
22569 1 0.71 1.09 15.0 0.92 0.67 35.4
3788 | 0.74 0.77 6.8 0.64 0.66 28.0
5585 | 0.57 0.57 2.7 0.56 0.57 6.8

82351042 038 1.2 039 038 29

TABLE 1. Bounds of the linear and quadratic versions.

B. Comparison of Score Functions

35. We intend to compare the performance of our method to that of the score-function described
in [5], 69 = w;|#* — 2|, where 2; is a prediction of x according to some criterion. The author proposes to
use the last value of the same variable in previous periods. We have also considered the score function
6! defined as 0° but using the forecasts obtained through the models in (9)—(11). Finally, 6% is the
score function computed using (9)-(11) and proposition 2. The global SF is just the sum of the two



Turnover Orders

FE, FE, E, F5

69 043 044 1.16 1.33

Y 0.30 0.38 0.36 0.45

5% 021 0.26 0.28 0.37
TABLE 2. Comparison of score functions.

local ones. We will measure the effectiveness of the score functions by ElJ =>. Elj (n), with
N N 5
. o i - . o i
Bn) = 3 @) -2 B = [ i@ - )]
>n >n
where we consider units arranged in descending order according to the corresponding score function.
These measures can be interpreted as estimates of the remaining error after editing the n first units.
The difference is that EY(n) is the aggregate squared error and E3(n) is the squared aggregate error.

Thus, Ej(n) is the one that has practical relevance, but we also include the values of EJ(n) because
in the linear problem [Pr], it is the aggregate squared error which appears in the left side of the
expectation constraints. In principle, it could happen that our score function was optimal for the
E{(n) but not for Ej(n). Nevertheless, the results in table 2 show that §2 is better measured both
ways.

VII. CASE STUDY 2: CROSS-SECTIONAL SURVEY WITH A COMPLEX QUES-
TIONNAIRE

36. In this section we briefly summarize the main results obtained so far from the application of
the methodology exposed above to the case in which we deal with cross-sectional data with a large
number of variables and no information from previous periods.

37. The results are related to a sample of 7215 questionnaires and 186 quantitative variables
extracted from Spanish Agricultural Census of 1999. Since we cannot rely in past information to make
the predictions, we will use regression models instead of time series models. Specifically, we try as our
first model a classical linear regression. For each of the variables in the questionnaire, we build a model
in which the log-transformed variable under study y; = log(1 + ;) is regressed against a subset of the
remaining ones as

i =060+ B +¢ (12)
¢

or y; = X'B + ¢ The most difficult and time-consuming task is the selection of the regressors, which
is done by an automatic method (a kind of stepwise algorithm).

38. Most of those variables take positive values with a continuous distribution but they have also
positive probability of a zero outcome, that is, they are semicontinuous variables. In other words, their
are distributed as a mixture of a degenerate distribution in zero and some other continuous distribution
in the positive semi-axis. Some models have been proposed in the literature to deal with this kind of
data (see [9]). In particular, our second model is a two-part model in which a logit is used to predict
whether the variable will be equal to zero or not, and a linear regression model conditional to the event
{y; > 0}. The model has the form

yi=(1-2)(X'B+¢) with &~ N(0,0%) (13)



and where Z € {0,1}. We establish a logistic regression model for the dichotomous event of having
zero or positive values.

P(Z=0)= - __ ’

=0) = . 14
( ) 14 eX'B ( )
39. The theoretical framework and results developed in sections II through IV are applicable to

this kind of models, but it is necessary to adapt the expressions of section V. The details of this
adaptation will be reported in a forthcoming article.

40. In this case, unlike in the one reported in the previous section, the original collected data
are not available. Consequently, we had to simulate them by introducing random errors in the final
published microdata. Two different settings have been considered. The first one supposes an adverse
situation where the errors are quite large and frequent, whereas the other simulates smaller and scarcer
errors.

41. In order to assess the quality (or usefulness in detecting errors) of the conditional moments
(Af), the same steps have been followed in both settings: the questionnaires have been sorted from the
biggest to the smallest priority of editing relating to each variable and the average across simulation
of the remaining relative error has been calculated too. Finally, we have represented the remaining
relative errors as functions of the number of edited questionnaires. These errors decrease faster for
some variables than for others, but on the whole results are quite good as the summary provided by
graphics of some quantiles (Figure 1) across variables shows. Approximately the removed error is about
the 80% for the 90% of variables when 40 questionnaires are edited. Consequently, the conditional
moments seem to provide an efficient way to detect the errors. On the other hand, not surprisingly, in
order to get rid of most of the error in all the variables, it is necessary to edit a very large fraction of
the total number of questionnaires.

42. The comparison between the results with the linear regression model and the two-part model
shows very little difference. Since the two-part model is much more complex and time-consuming,
it seems more convenient to use the linear model, at least until a convenient model selection criteria
is found. In that case, a composite method could be used, such that for each variable used one or
the other model depending on whether the gains of using the more complex models outweighs the
disadvantages or not. That study remains for future work.

VIIL FINAL REMARKS

43. We have described a theoretical framework to deal with the problem of selective editing,
defining the concept of selection strategy. We describe the search for a good selection strategy as an
optimization problem. This problem is a linear optimization problem with quadratic constraints. We
show that there is a score function that provides the solution to the problem with linear constraints.
We also show how to solve the quadratic problem.

44. In this framework, in order to adapt the method to a certain survey, it is only necessary to build
a tailored model to make the predictions and then, the selection is the result of applying mechanically
the theory of sections IT through V (with the exception of the two-part model for semicontinuous data,
that required some more work). This flexibility is one of the assets of our method.

45. The experiments with real data suggest that the method provides good selection strategies.
The quadratic method seems to be more conservative and then, the bounds are better fulfilled, but
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FIGURE 1. Remaining quadratic error (relative to total error) as a function of the
number of questionnaires edited in logarithmic scale. Each curve represents the quan-
tile indicated by its color: blue=50%, green=75%, red=90%, cyan=95%, purple=99%.
Strong error scenario.

more units are edited. On the other hand, the implementation of the linear method is easier and
computationally less demanding.
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