Presentation (WP43)

UNECE Work Session on Statistical Data Editing (Ljubljana, Slovenia, 9-11 May 2011)

ON IMPUTATION OF BINARY VARIABLES IN REGISTERS

by

Thomas Laitila

Statistics Sweden and Department of Statistics, Örebro university

(thomas.laitila@scb.se)

Question

- Random imputation suggested for imputation in registers
- Imputation techniques, like random imputation and the MI technique by Rubin (1987), are developed in the context of sample surveys.
- What are their properties in Register surveys?

Estimators

- A population U of N units, real valued variables y_k and x_k
- Estimation of $t_{yx} = \sum_{U} y_k x_k$ using register information
- Random imputation estimator

$$\hat{t}_{yx} = \sum_{U_R} y_k x_k + \sum_{U_y} \hat{y}_k(x_k) x_k + \sum_{U_x} y_k \hat{x}_k(y_k) + \sum_{U_{yx}} \hat{y}_k \hat{x}_k(\hat{y}_k)$$

• Deterministic imputation estimator

$$\hat{t}_{yx}^{D} = \sum_{U_R} y_k x_k + \sum_{U_v} \mu_{yk}(x_k) x_k + \sum_{U_x} y_k \mu_{xk}(y_k) + \sum_{U_{vx}} \lambda_k$$

Results

- Random imputation yields estimators with high <u>relative precision</u> (in terms of cv) if the population is large (law of large numbers).
- The loss in <u>efficiency</u> can be substantial by using random instead of deterministic imputation
- The loss in efficiency is particularly pronounced if the imputation method yields unbiased or nearly unbiased estimates.
- Random imputation do not provide with information on estimator uncertainty

Efficiency

• We note that

$$\hat{t}_{yx}^{D} = E(\hat{t}_{yx})$$

SO

$$Bias(\hat{t}_{yx}) = Bias(\hat{t}_{yx}^D)$$

Relative efficiency, measured in MSE terms, (generic)

$$\operatorname{Reff}\left(\hat{t}_{yx}; \hat{t}_{yx}^{D}\right) = \frac{Bias(\hat{t}_{yx})^{2}}{V(\hat{t}_{yx}) + Bias(\hat{t}_{yx})^{2}}$$

Let

$$\beta = \frac{Bias(\hat{t}_{yx})}{t_{yx}}$$

then

Reff
$$(\hat{t}_{yx}; \hat{t}_{yx}^{D}) = \frac{(\beta/(1+\beta))^{2}}{cv(\hat{t}_{yx})^{2} + (\beta/(1+\beta))^{2}}$$

Table 1: Efficiency of \hat{t}_{yx} compared with \hat{t}_{yx}^D for different levels of relative bias and coefficient of variation.

	Coefficient of Variation				
Relative bias	0.01	0.05	0.1	0.2	
-0.2	0.998	0.962	0.862	<mark>0.610</mark>	
-0.1	0.992	0.832	0.552	0.236	
-0.05	0.965	0.526	0.217	0.065	
-0.01	0.505	0.039	0.010	0.003	
0.01	0.495	0.038	0.010	0.002	
0.05	0.958	<mark>0.476</mark>	0.185	0.054	
0.1	0.988	0.768	0.452	0.171	
0.2	0.996	0.917	0.735	0.410	

Confidence intervals

The interval

$$\hat{t}_{yx} \pm 1.96 \cdot \hat{V} (\hat{t}_{yx})^{1/2}$$

gives an approximate 95% CI for \hat{t}_{yx}^D , not for t_{yx} !

An Illustration

The income register lacks information on Swedish citizens' earnings in Norway.

Information is available after publishing of income statistics.

Can we impute predicted values? (Snölilja, 2010)

- Prediction of work in Norway for people registered in three Swedish municipalities on the border.
- $y_k = 1$ if unit k have earnings in Norway, $y_k = 0$ otherwise $(x_k = 1)$
- Logit model derived from income statistics for 2006
- Predictions made for 2007

• Estimators:

$$\bullet \ \hat{t}_y^D = \sum_{U_R} y_k + \sum_{U_y} \mu_k$$

•
$$\hat{t}_y = \sum_{U_R} y_k + \sum_{U_y} \hat{y}_k$$
, $\hat{y}_k \sim \text{bern}(\mu_k)$

• Register total in 2007

•
$$t_y = 2324$$

•
$$N = 17457$$

(Note
$$U_y = U$$
 and $U_R = \phi$)

Number of persons with income from Norway 2007, estimated and recorded values.

Estimator	Estimate	Rel. Bias	MSE
\hat{t}_y^D	2110	-10%	53824
\hat{t}_y^{a}	2075 a)	-10%	54421 b)
t_y	2342 ^{c)}		

^{a)} One realization of the random imputation estimator. b) Bias and MSE for the estimator \hat{t}_y .

The variance of the estimator \hat{t}_y is

$$V(\hat{t}_y) = \sum_{U_y} \mu_k (1 - \mu_k) = 596.9$$

A 95% CI based on \hat{t}_y yields the interval

$$2075 \pm 47.9$$

This interval covers $\hat{t}_y^D = 2110$, but not the population value $t_y = 2342$.

Bias of interest, not variance!

THANKS FOR YOUR ATTENTION!