A Forward Search Algorithm for Compositional Data

Filippo Palombi

filippo.palombi@istat.it

in collaboration with

Simona Toti (ISTAT), Romina Filippini (ISTAT), Valeria Tomeo (ISTAT)

Conference of European Statisticians 2011 - UNECE

Work Session on Statistical Data Editing

Ljubljana - May 11th, 2011

- multivariates with components interpreted as parts of a whole
 - Example 1: Financial Portfolio (Unit: <u>\$</u>)

Port	folio	Stocks	Bonds	Options	Cache	Total
	P_1	2.000	8.000	100	30.000	40.100
	P_2	3.000	4'000	500	20.000	27:500

Example 2: Agricultural surface (Unit: are)

Farm	Soft Wheat	Barley	Corn	Other Cereals	Total
F_1	889	231	281	72	1473
F_2	1199	480	1191	85	2955
				•	

• we look at the relative importance of different components ...

what are compositional data?

- multivariates with components interpreted as parts of a whole
 - Example 1: Financial Portfolio (Unit: <u>\$</u>)

Portfolio	Stocks	Bonds	Options	Cache	Total
P_1	0.0499	0.1995	0.0025	0.7481	1.0
P_2	0.1091	0.1455	0.0182	0.7273	1.0

• Example 2: Agricultural surface (Unit: are)

Farm	Soft Wheat	Barley	Corn	Other Cereals	Total
F_1	0.6035	0.1568	0.1908	0.0489	1.0
F_2	0.4058	0.1624	0.4030	0.0288	1.0

- we look at the relative importance of different components ...
 - ... by normalizing each variable to its total

what are compositional data?

- multivariates with components interpreted as parts of a whole
 - Example 1: Financial Portfolio (Unit: <u>\$</u>)

Portfolio	Stocks	Bonds	Options	Cache	Total
P_1	0.0499	0.1995	0.0025	0.7481	1.0
P_2	0.1091	0.1455	0.0182	0.7273	1.0
	•	•	•		

• Example 2: Agricultural surface (Unit: are)

Farm	Soft Wheat	Barley	Corn	Other Cereals	Total
F_1	0.6035	0.1568	0.1908	0.0489	1.0
F_2	0.4058	0.1624	0.4030	0.0288	1.0

- we look at the relative importance of different components . . .
 - ...by normalizing each variable to its total
- how do we search for compositional outliers?

Relevant papers for Compositional Analysis

seminal work

"The Statistical Analysis of Compositional Data"

J. Aitchison

Monograph on Statistics and Applied Probability, Chapman & Hall Ltd. (1986)

distributional hypothesis

"Logistic-Normal Distributions: Some Properties and Uses"

J. Aitchison, S. M. Shen

Biometrika, Vol. 67, No. 2 (1980), pp. 261-272

isometric logratio transformation

"Isometric Logratio Transformations for Compositional Data Analysis"

J. J. Egozcue, V. Pawlowsky-Glahn, G. Mateu-Figueras and C. Barcelò-Vidal Mathematical Geology, Vol. 35, No. 3 (2003), pp. 279-300

Relevant papers for the Forward Search Algorithm (FS)

original proposal

"Fast very robust methods for the detection of multiple outliers" A. C. Atkinson Journal of the American Statistical Association, 89 (1994), pp. 1329–1339

multivariate version

"Finding an unknown number of of multivariate outliers" M. Rigni, A. C. Atkinson, A. Cerioli J. R. Statist. Soc. B (2009) 71, Part 2, pp. 447-466

mathematical foundations

"Discussion of The FS: Theory and Data Analysis by Atkinson, Riani, and Cerioli" S. Johansen and B. Nielsen Center for Research in Econometric Analysis of Time Series, Research Paper 2010-6

Standard Forward Search Algorithm

(Riani *et al.* (2009))

Null hypothesis

$$\mathcal{D} = \{ y^{(k)} \in \mathbb{R}^v \}_{k=1,...,n}$$

$$H_0: \{ y^{(1)} \sim \mathcal{N}(\mu, \Sigma) \} \cap \{ y^{(2)} \sim \mathcal{N}(\mu, \Sigma) \} \cap \dots \cap \{ y^{(n)} \sim \mathcal{N}(\mu, \Sigma) \}$$

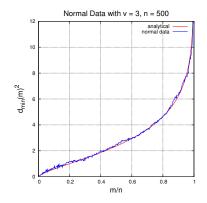
Construction of the signal $d_{\min}(m)$

- initialization
 - **0.** choose a subset $S(m_0)\subset \mathcal{D}$ of m_0 elements of \mathcal{D}
- m^{th} step $(m_0 \le m \le n-1)$:
 - 1. compute mean $\mu(m)$ and covariance matrix $\Sigma(m)$ of S(m)
 - **2.** compute the Mahalanobis distance d of all $y \in S(m)$ from $\mu(m)$
 - **3.** define $d_{\min}(m) = d_{\lfloor m+1 \rfloor}$ {the $(m+1)^{ ext{th}}$ -ordered distance}
 - **4.** define S(m+1) the set of the first m+1 y's closest to $\mu(m)$

- forward plot: $d_{\min}^2(m)$ vs. m
- under H_0 , $d_{\min}^2(m)$ fluctuates around

$$\begin{split} d_{\min}^2(m) &= (\chi_v^2)^{-1} \left(\frac{m}{n}\right) + \mathcal{O}\left(\frac{1}{n^k}\right) \\ k &\geq 1 \end{split}$$

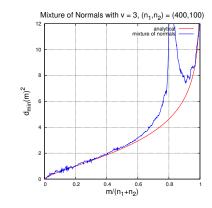
- in presence of outliers, distortions in the forward plot are observed
- outliers ≡ statistically relevant distortions
- ⇒ need for quantitative assessment ←



- forward plot: $d_{\min}^2(m)$ vs. m
- under H_0 , $d_{\min}^2(m)$ fluctuates around

$$\begin{split} d_{\min}^2(m) &= (\chi_v^2)^{-1} \left(\frac{m}{n} \right) + \mathcal{O} \left(\frac{1}{n^k} \right) \\ k &> 1 \end{split}$$

- in presence of outliers, distortions in the forward plot are observed
- outliers ≡ statistically relevant distortions
- ⇒ need for quantitative assessment ←



Construction of the envelopes

- $lack d_{\min}^2(m)=d_{\lceil m+1
 ceil}^2$ is the $(m+1)^{
 m th}$ order statistics
- "An easy method for obtaining percentage points of order statistics"
 W. C. Guenther, Technometrics, Vol. 19, No. 3 (1977), pp. 319–321

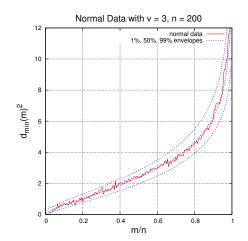
Theorem (Guenther)

Given $\{y^{(1)},\dots,y^{(n)}\}$ with $\{y^{(k)}\sim G\}_{k=1,\dots,n}$, the α -percentile of $y_{[m+1]}$ is given by the equation

$$y_{[m+1];\alpha} = G^{-1}\left(\frac{m+1}{m+1+(n-m)f_{2(n-m),2(m+1);1-\alpha}}\right)$$

where $f_{a,b;\alpha}$ denotes the α -percentile of the Fisher distribution with parameters (a,b).

• we choose a global confidence level α and, for each m, we draw α and $(1-\alpha)$ -percentiles (percentile envelopes)



Compositional Analysis

(Aitchison (1986))

compositional data live on the simplex

$$S^{(v)} = \left\{ x \in \mathbb{R}^v : \quad 0 < x_k < \kappa, \quad \sum_{k=1}^v x_k = \kappa \right\}$$

• Euclidean-type distances are not appropriate on $S^{(v)}$. Example:

$$d_{\mathrm{M}}(x,y) = \sqrt{\sum_{i,j=1}^{v} (x_i - y_i) \Sigma_{ij}^{-1} (x_j - y_j)}$$
 not defined: $\det \Sigma = 0$

• Aitchison has proposed a better definition:

$$d_{\mathcal{A}}(x,y) = \sqrt{\frac{1}{2v} \sum_{i,j=1}^{2v} \left[\ln \left(\frac{x_i}{x_j} \right) - \ln \left(\frac{y_i}{y_j} \right) \right]^2}$$

lacktriangledown d_A emerges naturally from a vector space construction

Q: can we develop a FS for Compositional Data?

The auestion breaks up into three sub-auestions:

- Q1. how do we construct the signal?
- Q2. how do we compute the percentile envelopes?
- **Q3.** how does H_0 change?

A: YES!

- A1. replace the Mahalanobis distance with the Aitchison distance
- A2. questions Q2. & Q3. are related; the answer rests in the ILR

$\mathcal{S}^{(v)}$ has a vector space structure

1. closure:
$$\mathcal{C}(x) = \left\{ \frac{\kappa x_1}{\sum_{k=1}^v x_k}, \dots, \frac{\kappa x_v}{\sum_{k=1}^v x_k} \right\}$$

2. vector sum:
$$x \oplus y = \mathcal{C}(x_1y_1, \dots, x_vy_v), \quad \forall x, y \in \mathcal{S}^{(v)}$$

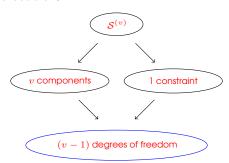
3. product by a real:
$$\alpha \otimes y = \mathcal{C}(x_1^{\alpha}, \dots, x_v^{\alpha}), \qquad \forall \alpha \in \mathbb{R}, \ x \in \mathcal{S}^{(v)}$$

3. scalar product:
$$\langle x,y\rangle_{\rm A}=\frac{1}{2v}\sum_{i,j=1}^v\ln\left(\frac{x_i}{x_j}\right)\ln\left(\frac{y_i}{y_j}\right)$$

4. vector norm:
$$||x||_{A} = \sqrt{\langle x, x \rangle_{A}}$$

5. distance:
$$d_{\mathcal{A}}(x,y) = ||x-y||_{\mathcal{A}}$$

Q: how to find a basis of $S^{(v)}$?

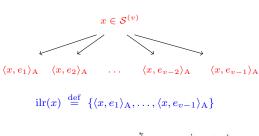


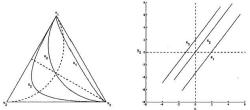
A: Gram-Schmidt orthonormalization makes the job!

Orthonormal vectors:

$$e_k = \mathcal{C}\left\{\underbrace{\exp\sqrt{\frac{1}{k(k+1)}}, \dots, \exp\sqrt{\frac{1}{k(k+1)}}}_{k \text{ times}}, \exp\left[-\sqrt{\frac{1}{k(k+1)}}\right], \underbrace{1,\dots,1}_{v-1-k \text{ times}}\right\}$$

 $k = 1, \ldots, v - 1$





$$\Rightarrow d_{\mathbf{A}}(x,y) = d_{\mathbf{E}}(\mathrm{ilr}(x),\mathrm{ilr}(y)), \quad \forall x,y \in \mathcal{S}^{(v)} \qquad \Leftarrow$$

- how does $d_A(x,y)$ distribute? it depends on how x,y distribute!
- one can easily prove the following logical chain:

$$y \sim \ln \mathcal{N}_v \qquad \Leftrightarrow \qquad \mathcal{C}(y) \sim L_{v-1} \qquad \Leftrightarrow \qquad \mathrm{ilr}(\mathcal{C}(y)) \sim \mathcal{N}_{v-1}$$

- lognormal distribution is more natural for positive quantities
- distributional parameters can be easily related

Therefore, we turn H_0 into:

$$H_0: \{y^{(1)} \sim \ln \mathcal{N}_v(\mu, \Sigma)\} \cap \{y^{(2)} \sim \ln \mathcal{N}_v(\mu, \Sigma)\} \cap \cdots \cap \{y^{(n)} \sim \ln \mathcal{N}_v(\mu, \Sigma)\}$$

and

$$d_{\rm A}^2(y^{(j)},y^{(k)}) = d_{\rm E}^2({\rm ilr}(\mathcal{C}(x^{(j)}),{\rm ilr}(\mathcal{C}(y^{(k)}))) \ \sim \ \text{Euclidean square distance}$$
 under normality hypothesis

distribution of quadratic forms has been studied a long time ago

"Probability Content of Regions Under Spherical Normal Distributions, IV: The Distribution of Homogeneous and Non-Homogeneous Quadratic Functions of Normal Variables"

H. Ruben, Annals of Mathematical Statistics, Vol. 33, No. 2 (1962), pp. 542–570

Theorem (Ruben)

The c.d.f. of a quadratic form t^2 of normal v-dimensional variables can be represented as a series of χ^2 distributions

$$H_{\mu,\Sigma}(t^2) = \sum_{j=0}^{\infty} \omega_j(\mu, \Sigma, p) \chi_{v+2j}^2(t^2/p)$$

- μ, Σ depend on t^2 and the distributional parameters of the variates
- coeffs $\{\omega_k\}_{k=v,v+2,v+4,\dots}$ can be recursively computed (cfr. paper)
- p>0 is a properly chosen scale factor
- the series converges rapidly: first few terms are sufficient

Compositional Forward Search

Null hypothesis

$$\mathcal{D} = \{ y^{(k)} \in \mathbb{R}_+^v \}_{k=1,...,n}$$

$$H_0: \{ y^{(1)} \sim \ln \mathcal{N}(\mu, \Sigma) \} \cap \{ y^{(2)} \sim \ln \mathcal{N}(\mu, \Sigma) \} \cap \dots \cap \{ y^{(n)} \sim \ln \mathcal{N}(\mu, \Sigma) \}$$

initialization

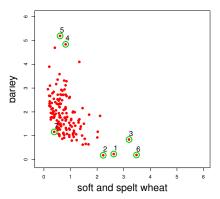
- **0.0** choose $\kappa=1$ and close $\mathcal{D}\colon \quad \mathcal{D} \to \mathcal{C}(\mathcal{D})$
- **0.b** apply the isometric logratio transform: $\mathcal{C}\left(\mathcal{D}\right)
 ightarrow \mathrm{ilr}\left[\mathcal{C}\left(\mathcal{D}\right)\right]$
- construction of the signal
 - ${
 m 1.}$ run the FS algorithm on ${
 m ilr}\left[{\cal C}\left({\cal D}
 ight)
 ight]$ with $d_{
 m M}^2$ replaced by $d_{
 m E}^2$
- construction of the percentile envelopes
 - **2.** compute the envelopes of $d_{
 m E}^2$ from Ruben's distribution
- \Rightarrow numerical technicalities: no time for a discussion \Leftarrow

An example from the Italian Agricultural Census 2010

n = 148

v=3 (surfaces @: barley, soft & spelt wheat, corn)

Data refer to the Province of Alessandria (Piedmont)



Plot in log-log scale. Unit: are

