IMPUTATION OF COMPLEX DATA WITH R-PACKAGE VIM: TRADITIONAL AND NEW METHODS BASED ON ROBUST ESTIMATION. Key Invited Paper

Matthias Templ^{1,2}, Alexander Kowarik¹, Peter Filzmoser²

¹ Department of Methodology, Statistics Austria
 ² Department of Statistics and Probability Theory, TU WIEN, Austria

UNECE Worksession on data editing Ljubljana, Mai 10, 2011

Content

- 2 Visualisation Tools
- 8 Robust Imputation: Motivation
- 4 Challenges

6 Simulation results

Results from real-world data

- VIM = Visualization and Imputation of Missings
- Univariate, bivariate, multiple and multivariate plot methods to highlight missing values in complex data sets to learn about their structure (MCAR, MAR, MNAR). Comes with a GUI as well.
- Hot-deck, k-NN and EM-based (robust) imputation methods for complex data sets. Due to time reasons we mostly concentrate on EM-based imputation. For hot-deck and k-NN, please have a look at the paper.
- VIM-book in 2012

\varTheta 🖯 🔿 🛛 🛛 Visualizatior	n and Imputation o	of Missing Values
Data Visualization Imputation	n Diagnostics Opti	ions Quit
Select Data		Scoling
Load R Data		Scaling
Transform Variables		None
Background Map	 Select all 	O Classical
	Deselect all	O Robust (MCD)
		C Robust (median, MAD)
Highlight Variables in Plots		Selection for Highlighting
	Select all	@ any
	Deselect all	O all
M.		

😑 😑 😑 🛛 🛛 Visualization a	nd Imputation of	f Missing Values
Data Visualization Imputation I	Diagnostics Optio	ons Quit
Select Variables P120060	Select all Deselect all	Scaling None Classical Robust (MCD) Robust (median, MAD)
Highlight Variables in Plots py050n_i py070n_i py080n_i py080n_i py090n	Select all Deselect all	Celection for Highlighting

Robust Imputation

0	🔿 🛛 🖹 🔿 🔿	n and Imputat	ion of M	lissing Values
Data	Visualization Imputation	Diagnostics	Options	5 Quit
P01 P03 P03 P03 P03 P03 P03 P03 P03	Aggregate Missings Histogram with Missings Spinogram with Missings Barplot with Missings Spine Plot with Missings Boxplot with Missings Parallel Boxplots		l t all	• Scaling • None • Classical • Robust (MCD) • Robust (median, MAD)
Hig bur age sex RO(PO(PO1	Marginplot Scatterplot with Missings Bivariate Jitter Plot Marginplot Matrix Scatterplot Matrix with Mis Parallel Coordinate Plot wit Matrix Plot	sings h Missings	l t all	Selection for Highlighting
	Mosaic Plot with Missings Map of Missings Growing Dot Map with Mis Map with Colored Regions	sings		

😝 😑 😑 🛛 🛛 Visualization and Imputati	on of Missing Values
Data Visualization Imputation Diagnostics	Options Quit
Select Variables py130n_i py140n py140n_i pek_n py010g py035g	Preferences
Highlight Variables in Plots P120060 py010n py010n_i py035n py035n_i py050n V	Selection for Highlighting

$\bigcirc \bigcirc \bigcirc \bigcirc$ X Visualization and Imputation of I	Missing Values
Data Visualization Imputation Diagnostics Option	ns Quit
Select Plot Colors Color 1: skyblue	aling None Classical Robust (MCD) Robust (median, MAD)
Color 4: red4	any J all
Miscellaneous Embed multivariate plots in TcI/Tk OK Cancel	

Visualisation Tools

The GUI ...

Templ, et al. (STAT, TU)

Robust Imputation

Templ, et al. (STAT, TU)

Robust Imputation

Ljubljana, Mai 10, 2011 14 / 50

ata Visualization	Imputation	Diagnostics	Options	Quit
Select Variables BodyWott BrainWgt NonD Dream Sleep	k Neares Hot Decl IRMI	st Neighbour k • Select a • Deselect	t all	Scaling None Classical Robust (MCD)
Span	• in Plata			C Robust (median, MAD)
BodyWgt BrainWgt NonD		 Select a 		 any
Dream Sleep		Deselect Deselect	tall	C all


```
kNN(data, variable=colnames(data), metric=NULL, k=5,
dist_var=colnames(data),weights=NULL,numFun = median,
catFun=maxCat,makeNA=NULL,NAcond=NULL, impNA=TRUE,
donorcond=NULL,mixed=vector(),trace=FALSE,
imp_var=TRUE,imp_suffix="imp",addRandom=FALSE)
```

BodyWgt	
BrainWgt	
NonD	
Dream	
Sleep	(made)
Span	-
Select variables to	sort
BodyWgt	-
BrainWgt	
NonD	
Dream	_
Sleep	- 1
Span	-
Select Variables to	build domains

hotdeck(data, variable=colnames(data), ord_var=NULL, domain_var=NULL,makeNA=NULL,NAcond=NULL,impNA=TRUE, donorcond=NULL,imp_var=TRUE,imp_suffix="imp")


```
irmi(x, eps = 0.01, maxit = 100, mixed = NULL,
    step = FALSE, robust = FALSE, takeAll = TRUE,
    noise = TRUE, noise.factor = 1, force = FALSE,
    robMethod = "lmrob", force.mixed = TRUE,
    mi = 1, trace=FALSE)
```

Median Imputation

Templ, et al. (STAT, TU)

Robust Imputation

Ljubljana, Mai 10, 2011 19 / 50

kNN Imputation

Templ, et al. (STAT, TU)

Robust Imputation

Ljubljana, Mai 10, 2011 20 / 50

Templ, et al. (STAT, TU)

Robust Imputation

Ljubljana, Mai 10, 2011 21 / 50

IRMI

Templ, et al. (STAT, TU)

Robust Imputation

Ljubljana, Mai 10, 2011 22 / 50

Median Imputation

х

kNN Imputation

х

Templ, et al. (STAT, TU)

Robust Imputation

Ljubljana, Mai 10, 2011 25 / 50

IRMI

Templ, et al. (STAT, TU)

Robust Imputation

Ljubljana, Mai 10, 2011 26 / 50

Median Imputation

kNN Imputation

Templ, et al. (STAT, TU)

Robust Imputation

Ljubljana, Mai 10, 2011 29 / 50

IRMI

Templ, et al. (STAT, TU)

Robust Imputation

Ljubljana, Mai 10, 2011 30 / 50

Mixed type of variables: various variables being **nominal** scaled, some variables might be **ordinal** and some variables could be determined to be of **continuous** scale.

Semi-continuous variables: "semi-continuous" distributions, i.e. a variable consisting of a continuous scaled part and a certain proportion of equal values.

Far from normality: Virtually always outlying observations included in real-world data.

multiple imputation: Imputated must be both, reflect the multivariate structure of the data and including "randomness".

Mixed type of variables: various variables being **nominal** scaled, some variables might be **ordinal** and some variables could be determined to be of **continuous** scale.

Semi-continuous variables: "semi-continuous" distributions, i.e. a variable consisting of a continuous scaled part and a certain proportion of equal values.

Far from normality: Virtually always outlying observations included in real-world data.

multiple imputation: Imputated must be both, reflect the multivariate structure of the data and including "randomness".

Mixed type of variables: various variables being **nominal** scaled, some variables might be **ordinal** and some variables could be determined to be of **continuous** scale.

Semi-continuous variables: "semi-continuous" distributions, i.e. a variable consisting of a continuous scaled part and a certain proportion of equal values.

Far from normality: Virtually always outlying observations included in real-world data.

multiple imputation: Imputated must be both, reflect the multivariate structure of the data and including "randomness".

- All missing values imputed with simulated values drawn from their predictive distribution given the observed data and the specified parameter.
- ullet \longrightarrow based on sequential regressions.
- EM-based
- In general, there are often problems when applied to complex data sets.
- ...and, of course, they are highly driven by influencial points, representative and non-representative outliers.

- All missing values imputed with simulated values drawn from their predictive distribution given the observed data and the specified parameter.
- ullet \longrightarrow based on sequential regressions.
- EM-based
- In general, there are often problems when applied to complex data sets.
- ...and, of course, they are highly driven by influencial points, representative and non-representative outliers.

- All missing values imputed with simulated values drawn from their predictive distribution given the observed data and the specified parameter.
- ullet \longrightarrow based on sequential regressions.
- EM-based
- In general, there are often problems when applied to complex data sets.
- ...and, of course, they are highly driven by influencial points, representative and non-representative outliers.

- All missing values imputed with simulated values drawn from their predictive distribution given the observed data and the specified parameter.
- ullet \longrightarrow based on sequential regressions.
- EM-based
- In general, there are often problems when applied to complex data sets.

...and, of course, they are highly driven by influencial points, representative and non-representative outliers.

- All missing values imputed with simulated values drawn from their predictive distribution given the observed data and the specified parameter.
- ullet \longrightarrow based on sequential regressions.
- EM-based
- In general, there are often problems when applied to complex data sets.

... and, of course, they are highly driven by influencial points, representative and non-representative outliers.

Challenges

IVEWARE

- Very popular software used in many applications in Official Statistics.
- Similar to the previous mentioned methods.
- The imputations are obtained by fitting a sequence of (Bayesian) regression models and drawing values from the corresponding predictive distributions.
- Sequentially imputation: in each step, one variable serve as response and certain other variables serves as predictors. Fit a certain model using the observed part of the response and estimate (update) the (former) missing values in the response.
 - Initialization loop: ...
 - Second outer loop:
 - Estimates of missing values are updated sequentially using one variable as response and all other variables as predictors until convergency.
- Since missing values are drawn from their predictive distribution given the observed data and the specified parameter, the procedure allows **multiple imputation**.

- Very popular software used in many applications in Official Statistics.
- Similar to the previous mentioned methods.
- The imputations are obtained by fitting a sequence of (Bayesian) regression models and drawing values from the corresponding predictive distributions.
- Sequentially imputation: in each step, one variable serve as response and certain other variables serves as predictors. Fit a certain model using the observed part of the response and estimate (update) the (former) missing values in the response.
 - Initialization loop: ...
 - Second outer loop:
 - Estimates of missing values are updated sequentially using one variable as response and all other variables as predictors until convergency.
- Since missing values are drawn from their predictive distribution given the observed data and the specified parameter, the procedure allows **multiple imputation**.

- Very popular software used in many applications in Official Statistics.
- Similar to the previous mentioned methods.
- The imputations are obtained by fitting a sequence of (Bayesian) regression models and drawing values from the corresponding predictive distributions.
- Sequentially imputation: in each step, one variable serve as response and certain other variables serves as predictors. Fit a certain model using the observed part of the response and estimate (update) the (former) missing values in the response.
 - Initialization loop: ...
 - Second outer loop:
 - Estimates of missing values are updated sequentially using one variable as response and all other variables as predictors until convergency.
- Since missing values are drawn from their predictive distribution given the observed data and the specified parameter, the procedure allows **multiple imputation**.

- Very popular software used in many applications in Official Statistics.
- Similar to the previous mentioned methods.
- The imputations are obtained by fitting a sequence of (Bayesian) regression models and drawing values from the corresponding predictive distributions.
- Sequentially imputation: in each step, one variable serve as response and certain other variables serves as predictors. Fit a certain model using the observed part of the response and estimate (update) the (former) missing values in the response.
 - Initialization loop: ...
 - Second outer loop:

Estimates of missing values are updated sequentially using one variable as response and all other variables as predictors until convergency.

• Since missing values are drawn from their predictive distribution given the observed data and the specified parameter, the procedure allows **multiple imputation**.

- Very popular software used in many applications in Official Statistics.
- Similar to the previous mentioned methods.
- The imputations are obtained by fitting a sequence of (Bayesian) regression models and drawing values from the corresponding predictive distributions.
- Sequentially imputation: in each step, one variable serve as response and certain other variables serves as predictors. Fit a certain model using the observed part of the response and estimate (update) the (former) missing values in the response.
 - Initialization loop: ...
 - Second outer loop:

Estimates of missing values are updated sequentially using one variable as response and all other variables as predictors until convergency.

• Since missing values are drawn from their predictive distribution given the observed data and the specified parameter, the procedure allows **multiple imputation**.

IRMI

- Only the second outer loop is used (missing values are initialised in an other manner)
- In contradiction to IVEWARE we use quite different regression methods → Robust methods (Note: a lot of problems has to be solved when using robust methods for complex data like EU-SILC).
- Alternatively, **stepwise** model selction tools are integrated using AIC or BIC.
- Multiple imputation is provided.

• Only the second outer loop is used (missing values are initialised in an other manner)

IRM

- In contradiction to IVEWARE we use quite different regression methods → Robust methods (Note: a lot of problems has to be solved when using robust methods for complex data like EU-SILC).
- Alternatively, **stepwise** model selction tools are integrated using AIC or BIC.
- Multiple imputation is provided.

• Only the second outer loop is used (missing values are initialised in an other manner)

IRM

- In contradiction to IVEWARE we use quite different regression methods → Robust methods (Note: a lot of problems has to be solved when using robust methods for complex data like EU-SILC).
- Alternatively, **stepwise** model selction tools are integrated using AIC or BIC.
- Multiple imputation is provided.

- *continuous*, robust (IRMI) or ols (IMI, IVEWARE) regression methods are used.
- *categorical*, generalized linear regression is applied (IRMI: robust or non-robust).
- *binary*, logistic linear regression is applied (IRMI: robust but non-robust is prefered).
- *mixed*, a two-stage approach is used whereas in the first stage logistic regression is applied in order to decide if a missing value is imputed with zero or by applying robust regression based on the continuous part of the response.
- *count*, robust generalized linear models (family: Poisson) is used.

- *continuous*, robust (IRMI) or ols (IMI, IVEWARE) regression methods are used.
- *categorical*, generalized linear regression is applied (IRMI: robust or non-robust).
- *binary*, logistic linear regression is applied (IRMI: robust but non-robust is prefered).
- *mixed*, a two-stage approach is used whereas in the first stage logistic regression is applied in order to decide if a missing value is imputed with zero or by applying robust regression based on the continuous part of the response.
- *count*, robust generalized linear models (family: Poisson) is used.

- *continuous*, robust (IRMI) or ols (IMI, IVEWARE) regression methods are used.
- *categorical*, generalized linear regression is applied (IRMI: robust or non-robust).
- *binary*, logistic linear regression is applied (IRMI: robust but non-robust is prefered).
- *mixed*, a two-stage approach is used whereas in the first stage logistic regression is applied in order to decide if a missing value is imputed with zero or by applying robust regression based on the continuous part of the response.
- *count*, robust generalized linear models (family: Poisson) is used.

- *continuous*, robust (IRMI) or ols (IMI, IVEWARE) regression methods are used.
- *categorical*, generalized linear regression is applied (IRMI: robust or non-robust).
- *binary*, logistic linear regression is applied (IRMI: robust but non-robust is prefered).
- *mixed*, a two-stage approach is used whereas in the first stage logistic regression is applied in order to decide if a missing value is imputed with zero or by applying robust regression based on the continuous part of the response.
- *count*, robust generalized linear models (family: Poisson) is used.

- *continuous*, robust (IRMI) or ols (IMI, IVEWARE) regression methods are used.
- *categorical*, generalized linear regression is applied (IRMI: robust or non-robust).
- *binary*, logistic linear regression is applied (IRMI: robust but non-robust is prefered).
- *mixed*, a two-stage approach is used whereas in the first stage logistic regression is applied in order to decide if a missing value is imputed with zero or by applying robust regression based on the continuous part of the response.
- count, robust generalized linear models (family: Poisson) is used.

- *continuous*, robust (IRMI) or ols (IMI, IVEWARE) regression methods are used.
- *categorical*, generalized linear regression is applied (IRMI: robust or non-robust).
- *binary*, logistic linear regression is applied (IRMI: robust but non-robust is prefered).
- *mixed*, a two-stage approach is used whereas in the first stage logistic regression is applied in order to decide if a missing value is imputed with zero or by applying robust regression based on the continuous part of the response.
- *count*, robust generalized linear models (family: Poisson) is used.

Errors from Categorical and Binary Variables

This error measure is defined as the proportion of imputed values taken from an incorrect category on all missing categorical or binary values:

$$err_{c} = \frac{1}{m_{c}} \sum_{j=1}^{p_{c}} \sum_{i=1}^{n} \mathbb{I}(x_{ij}^{orig} \neq x_{ij}^{imp}) \quad , \tag{1}$$

with I the indicator function, m_c the number of missing values in the p_c categorical variables, and n the number of observations.

Errors from Continuous and Semi-continuous Variables

Here we assume that the constant part of the semi-continuous variable is zero. Then, the joint error measure is

$$err_{s} = \frac{1}{m_{s}} \sum_{j=1}^{p_{s}} \sum_{i=1}^{n} \left[\left| \frac{(x_{ij}^{orig} - x_{ij}^{imp})}{x_{ij}^{orig}} \right| \cdot \mathbb{I}(x_{ij}^{orig} \neq 0 \land x_{ij}^{imp} \neq 0) + \\ \mathbb{I}((x_{ij}^{orig} = 0 \land x_{ij}^{imp} \neq 0) \lor (x_{ij}^{orig} \neq 0 \land x_{ij}^{imp} = 0)) \right]$$
(6)

with m_s the number of missing values in the p_s continuous and semi-continuous variables.

Simulation Results: Varying the Correlation

Simulation Results: Varying the Amount of Variables

Templ, et al. (STAT, TU)

Robust Imputation

Ljubljana, Mai 10, 2011 39 / 50

Including (moderate) Outliers and Varying their Amount, high Correlation

Including (moderate) Outliers and Varying their Amount, low Correlation

Imputation in EU-SILC

We considered certain HH-components, but also some nominal variables, such as *household size*, *region* and *htype3*.

- R = 0
 R
- \bigcirc Set missing values in HH-components randomly (MCAR). R + +
- Impute the missing values.
- O Evaluate the imputations using certain information loss measures.
- Go to (2) until R = 100.

Results from real-world data

Imputation in EU-SILC, Results

CENSUS Data - no outliers

(i) Error for categorical variables

(j) Error for numerical variables

Airquality Data

Example Data: SBS data

Templ, et al. (STAT, TU)

Robust Imputation

Small walkthrough to VIM

Most important functionality for imputation

Listing 1: Hotdeck imputation.

hotdeck(x, ord_var=c("Besch","Umsatz"), imp_var=FALSE)

Listing 2: k-nearest neighbor imputation.

kNN(x)

Listing 3: Application of robust iterative model-based imputation. imp <- irmi(x)

... sensible defaults!

SBS data: Simulation Results

absolute deviation

Templ, et al. (STAT, TU)

Robust Imputation

Ljubljana, Mai 10, 2011 48 / 50

- We proposed the system VIM for visualization and imputation of missing values.
- IRMI performs almost always best, but hot-deck methods have it's advantages as well (they are very fast and easy understandable)
- VIM is an free and open-source project. It can be freely downloaded at http://cran.r-project.org/package=VIM
- Joint development and contributions are warmly welcome.

- M. Templ, A. Alfons, and A. Kowarik. <u>VIM: Visualization and Imputation</u> of Missing Values, 2011a. URL http://cran.r-project.org. R package version 2.0.1.
- Matthias Templ, Alexander Kowarik, and Peter Filzmoser. Iterative stepwise regression imputation using standard and robust methods.
 <u>Computational Statistics</u> Data Analysis, In Press, Uncorrected Proof, 2011b. ISSN 0167-9473. doi: DOI:10.1016/j.csda.2011.04.012. URL http://www.sciencedirect.com/science/article/ B6V8V-52R7YYH-2/2/2c6c9ed7138d50c4197e991d8ffb8a1f.