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Overview

R-package VIM

VIM = Visualization and Imputation of Missings

Univariate, bivariate, multiple and multivariate plot methods to
highlight missing values in complex data sets to learn about their
structure (MCAR, MAR, MNAR). Comes with a GUI as well.

Hot-deck, k-NN and EM-based (robust) imputation methods for
complex data sets. Due to time reasons we mostly concentrate on
EM-based imputation. For hot-deck and k-NN, please have a look at
the paper.

VIM-book in 2012
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Visualisation Tools

The GUI . . .
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Visualisation Tools

The GUI . . .
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Visualisation Tools

The GUI . . .
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Visualisation Tools

The GUI - Imputation
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Visualisation Tools

The GUI - Imputation

kNN(data , variable=colnames(data), metric=NULL , k=5,

dist_var=colnames(data),weights=NULL ,numFun = median ,

catFun=maxCat ,makeNA=NULL ,NAcond=NULL , impNA=TRUE ,

donorcond=NULL ,mixed=vector(),trace=FALSE ,

imp_var=TRUE ,imp_suffix="imp",addRandom=FALSE)
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Visualisation Tools

The GUI - Imputation

hotdeck(data , variable=colnames(data), ord_var=NULL ,

domain_var=NULL ,makeNA=NULL ,NAcond=NULL ,impNA=TRUE ,

donorcond=NULL ,imp_var=TRUE ,imp_suffix="imp")

Templ, et al. (STAT, TU) Robust Imputation Ljubljana, Mai 10, 2011 17 / 50



Visualisation Tools

The GUI - Imputation

irmi(x, eps = 0.01 , maxit = 100, mixed = NULL ,

step = FALSE , robust = FALSE , takeAll = TRUE ,

noise = TRUE , noise.factor = 1, force = FALSE ,

robMethod = "lmrob", force.mixed = TRUE ,

mi = 1, trace=FALSE)
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Robust Imputation: Motivation

Median Imputation
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Robust Imputation: Motivation

kNN Imputation
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Robust Imputation: Motivation

IVEWARE
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Robust Imputation: Motivation

IRMI
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Robust Imputation: Motivation

Median Imputation
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Robust Imputation: Motivation

kNN Imputation
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Robust Imputation: Motivation

IVEWARE
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Robust Imputation: Motivation

IRMI
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Robust Imputation: Motivation

Median Imputation
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Robust Imputation: Motivation

kNN Imputation
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Robust Imputation: Motivation
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Robust Imputation: Motivation

IRMI
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Challenges

Some Challenges

Mixed type of variables: various variables being nominal scaled, some
variables might be ordinal and some variables could be
determined to be of continuous scale.

Semi-continuous variables: �semi-continuous� distributions, i.e. a variable
consisting of a continuous scaled part and a certain
proportion of equal values.

Far from normality: Virtually always outlying observations included in
real-world data.

multiple imputation: Imputated must be both, re�ect the multivariate
structure of the data and including �randomness�.
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Challenges

MIX, MICE, MI, MITOOLS, . . .

All missing values imputed with simulated values drawn from their
predictive distribution given the observed data and the speci�ed
parameter.

−→ based on sequential regressions.

EM-based

In general, there are often problems when applied to complex data sets.

. . . and, of course, they are highly driven by in�uencial points,
representative and non-representative outliers.
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Challenges

IVEWARE

Very popular software used in many applications in O�cial Statistics.

Similar to the previous mentioned methods.

The imputations are obtained by �tting a sequence of (Bayesian)
regression models and drawing values from the corresponding
predictive distributions.
Sequentially imputation: in each step, one variable serve as
response and certain other variables serves as predictors. Fit a
certain model using the observed part of the response and estimate
(update) the (former) missing values in the response.

Initialization loop: . . .

Second outer loop:

Estimates of missing values are updated sequentially using one variable

as response and all other variables as predictors until convergency.

Since missing values are drawn from their predictive distribution given
the observed data and the speci�ed parameter, the procedure allows
multiple imputation.
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IRMI

IRMI

Only the second outer loop is used (missing values are initialised in an
other manner)

In contradiction to IVEWARE we use quite di�erent regression
methods → Robust methods (Note: a lot of problems has to be
solved when using robust methods for complex data like EU-SILC).

Alternatively, stepwise model selction tools are integrated using AIC
or BIC.

Multiple imputation is provided.
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IRMI

Selection of Regression Models

If the response is

continuous, robust (IRMI) or ols (IMI, IVEWARE) regression methods
are used.

categorical , generalized linear regression is applied (IRMI: robust or
non-robust).

binary , logistic linear regression is applied (IRMI: robust but
non-robust is prefered).

mixed , a two-stage approach is used whereas in the �rst stage logistic
regression is applied in order to decide if a missing value is imputed
with zero or by applying robust regression based on the continuous
part of the response.

count, robust generalized linear models (family: Poisson) is used.
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Simulation results Measures of information loss

Errors from Categorical and Binary Variables

This error measure is de�ned as the proportion of imputed values taken
from an incorrect category on all missing categorical or binary values:

errc =
1

mc

pc∑
j=1

n∑
i=1

I(xorigij 6= x
imp
ij ) , (1)

with I the indicator function, mc the number of missing values in the pc
categorical variables, and n the number of observations.
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Simulation results Measures of information loss

Errors from Continuous and Semi-continuous Variables

Here we assume that the constant part of the semi-continuous variable is
zero. Then, the joint error measure is

errs =
1

ms

ps∑
j=1

n∑
i=1

[∣∣∣∣∣(x
orig
ij − x

imp
ij )

x
orig
ij

∣∣∣∣∣ · I(xorigij 6= 0 ∧ x
imp
ij 6= 0) +

I((xorigij = 0 ∧ x
imp
ij 6= 0) ∨ (xorigij 6= 0 ∧ x

imp
ij = 0))

]
(6)

with ms the number of missing values in the ps continuous and
semi-continuous variables.
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Simulation results Speci�c simulation results

Simulation Results: Varying the Correlation
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Simulation results Speci�c simulation results

Simulation Results: Varying the Amount of Variables
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Simulation results Speci�c simulation results

Including (moderate) Outliers and Varying their Amount,
high Correlation
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Simulation results Speci�c simulation results

Including (moderate) Outliers and Varying their Amount,
low Correlation
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Results from real-world data

Imputation in EU-SILC

We considered certain HH-components, but also some nominal variables,
such as household size, region and htype3.

1 R = 0

2 Set missing values in HH-components randomly (MCAR). R ++

3 Impute the missing values.

4 Evaluate the imputations using certain information loss measures.

5 Go to (2) until R = 100.
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Results from real-world data

Imputation in EU-SILC, Results
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Results from real-world data

CENSUS Data - no outliers
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Results from real-world data

Airquality Data
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Small walkthrough to VIM

Example Data: SBS data
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Small walkthrough to VIM

Most important functionality for imputation

Listing 1: Hotdeck imputation.

hotdeck(x, ord_var=c("Besch","Umsatz"), imp_var=FALSE)

Listing 2: k-nearest neighbor imputation.

kNN(x)

Listing 3: Application of robust iterative model-based imputation.

imp <- irmi(x)

. . . sensible defaults!
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Small walkthrough to VIM

SBS data: Simulation Results
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Conclusion

Conclusion

We proposed the system VIM for visualization and imputation of
missing values.

IRMI performs almost always best, but hot-deck methods have it's
advantages as well (they are very fast and easy understandable)

VIM is an free and open-source project. It can be freely downloaded at

http://cran.r-project.org/package=VIM

Joint development and contributions are warmly welcome.
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