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I. INTRODUCTION

1. The majority of methods used for statistical data imputation may be divided into two
broad groups: imputation by estimation and donor imputation.  Imputation by estimation in
contrast with donor imputation is used when there are reasons for using a certain data model.
Regression models are used rather often for this purpose, including autoregression.  However,
unlikely regression models for parameters estimation and prediction, applying regression
methods to imputation poses some specific problems.

2. While donor imputation assures that an imputed record meets all the edits, imputation by
regression estimators and estimators upon the whole, does not provide such guarantees. That is
why after regression imputation, a repeated checking of edited data is usually needed, and if the
result is negative, it may require another stage of imputation [1].  However, even a repeated
imputation does not guarantee that a record will pass all the edits.

3. Another shortcoming of applying estimation methods is that variability in the imputed
values is underestimated in comparison with variability of non-imputed values.  To solve this
problem, it was suggested to add random error to the value fitted by regression estimator [2].
Multiple imputation is another way to overcome this problem [3].

4. This paper proposes methods of imputing missing or inconsistent data items based on
linear regression models, which allow obtaining a set of estimates for each imputed value. All of
these estimates belong to the linear regression model with different criteria of modeling. Entropy
is used as a criterion of the regression modeling. From this point of view, usual regression
estimates used for prediction and parameter estimation are the maximum entropy estimates. In
this paper, the minimum entropy estimates for time series will be obtained, as well as a whole set
of estimates between the minimum and maximum entropy. For cross-sectional data, the
analogues of these estimates will be obtained.
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5. An opportunity to select estimates from a certain range increases the probability that an
imputed record will satisfy all the edits. An alternative method of using this set of regression
estimates is multiple imputation. Actually, here we propose another way of solving the above-
mentioned problems, which arise when data are imputed by estimation methods.

6. Section II deals with imputation of longitudinal data by autoregression where, in addition
to the known estimate of the maximum entropy, estimates of the minimum entropy are derived
together with a whole range of intermediate estimates. Section III deals with the analogues of the
estimates of maximum and minimum entropy for cross-sectional data. In Section IV the
estimates of multichannel autoregression are proposed for longitudinal surveys, which take into
account both the correlations between variables with different lags and autocorrelations.  In
Section V, some examples of imputation of households budget survey data by the derived
regression methods are given.

II. LONGITUDINAL DATA AUTOREGRESSION

7. A problem of imputing a missing or inconsistent value on the basis of previous
observations may be formulated as a problem of a one-step-forward prediction of a time series.
This prediction, or extending a time series beyond the observed period, is always based on a
certain model of data and a specified criterion.  Maximizing entropy is an example of such
criterion. It means that an extension of a time series is chosen, which autocorrelation function is
the most random of all autocorrelation function conforming to the available data.  In the case of
Gaussian statistics it corresponds to the known solution that minimizes prediction error for a
stationary time series. [4].

8. Let us consider a stationary time series x(t) with a correlation function (CF), where N
values are known {r[0], r[1], ..., r[n-1]}. It is necessary to predict the next value r[n] of the
correlation function on the basis of known values. Linear prediction filters for CF and time series
are determined as follows:
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where a = [a[1], a[2], …, a[p]]T is a vector of a linear prediction coefficients; p - order of
autoregression; T — matrix transposition.

9. Let ζ be the unknown element rn  of the CF (to distinguish it from the known elements of
CF). Thus, we search for the extension Rn of a Toeplitz covariance matrix Rn-1:
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with the constraint of a positive semi definite extended covariance matrix:  det(Rn) ≥ 0.
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10. The entropy of a zero mean the Gaussian process can be specified using the determinant
of the covariance matrix of the process [5]

(2.4) H = 
2

1
ln[det(R)].

11. Thus, the problem of maximizing or minimizing the entropy of the extended time series
is reduced to a problem of maximizing or minimizing the determinant of the extended covariance
matrix (2.2).

12. As det(Rn) is a quadratic function of the predicted element  ζ, there are two values of
ζ where the matrix determinant is equal to zero. These two values define the boundaries of an
interval, which ζ should belong to.

det(Rn)

ζmin1 ζmax ζmin2 ζ0

13. The known estimate of a vector of the prediction parameters [5]
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is an estimate of the maximum entropy, that is a predicted element of the correlation function
r[n] = ζmax.

14. To find the solutions for the minimum entropy and the solutions for intermediate values
of entropy, let us define the determinant of the Toeplitz covariance matrix Rn as a function of the
predicted value ζ [6]
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where Dn-i = det(Rn-i), Dn-1,(1)(ζ) = det
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15. By applying the Sylvester identity to the determinant Dn-1,(1)(ζ), we transform (2.6) to
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where, assuming Dn-2 > 0 and Dn(ζ) ≥ 0, we find a single solution of the maximum entropy and
two solutions of the minimum entropy (Dn(ζ) = 0):
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16. Estimates of the linear prediction coefficients a[i] may be obtained from the following
matrix equation:
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where ρn is a prediction error variance, which, in the case of minimum entropy solution, is
assumed to be zero.

17. Independently of ζ value, it follows from (2.11) that
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18. Substitution of a respective values of ζ from the range determined by (2.8), (2.9), (2.10)
into vector rn(ζ) gives correspondent prediction vectors a for the minimum and maximum
entropy together with all intermediate solutions. The imputed value is determined by (2.2),
where the obtained regression coefficients are substituted to.

19. Thus, we have not a single regression estimate for each imputed value, but a whole set of
regression estimates with entropy in the range from zero to maximum. Two ways of using these
estimates seem to be the most reasonable:

a) One estimate is chosen for imputation from the set of available solutions, which meets all
the edits. On the one hand, the availability of a set of estimates increases the probability
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for an imputed value to hit the feasible interval, and, on the other hand, all these estimates
belong to one class of autoregression estimates.

b) The obtained set of estimates may be used as initial estimates for a method of multiple
imputation, which provides more realistic variances for imputed values.

III. CROSS-SECTIONAL DATA MULTIPLE REGRESSION

20. In the case of multiple regression, we are not speaking strictly of minimizing or
maximizing the entropy of the process, however, some analogues could be suggested for the
estimates proposed above. Here, the value of the determinant of the covariance matrix will
change as well, but, not due to changing of the predicted element but due to subtracting a noise
component from the matrix.

21. Let y1 is a dependent variable and y2, ..., yn are independent variables of  a given survey.
If R is a covariance matrix for these variables, then the vector of the regression coefficients
which minimizes the standard error, is determined as follows:
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22. The solution (2.14) is equal to the solution of the maximum entropy for a stationary
process. We get a certain analogue for the solution of the minimum entropy if we consider the
following matrix:

(2.15) Rσ = R – σ2I,

where 0 ≤ σ2 ≤ λmin ; I is an identity matrix and λmin is the minimum eigenvalue of the matrix R.

23. Physically, operation (2.15) may be thought of as subtracting a part of uncorrelated noise
component, which is always presented in statistical measurements, from a covariance matrix.
The minimum eigenvalue λmin of the matrix R corresponds to the variance of this uncorrelated
component.

24. Let u be the first column of the matrix -1
σR , if  σ2 ≠ λmin, or an eigenvector corresponding

to a zero eigenvalue of Rσ, if σ2 = λmin , then a vector aσ of regression coefficients will be defined
as:

(2.16) aσ = 
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25. By specifying various values to σ2, we can obtain a set of regression estimates for a value
to be imputed. The ways of using these estimates are the same as described above for
autoregression with various values of entropy.
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IV. MULTICHANNEL AUTOREGRESSION

26. The models of auto- and multiple regression considered above take into account
respectively either time dependences, or relationships between variables. However, there is a
model of multichannel autoregression, which allows us to take into account both these relations
at the same time. Of course, there should be reasons for applying a more complicated model, and
if there are no serious "pros" for using this model, then less complicated models should be
applied. But there are situations, when it is advisable to take into account both types of relations
and to apply a multichannel autoregression model.

27. In case of multichannel autoregression, we can also obtain a set of estimates for each
value to be imputed. Multichannel regression can be viewed in this context as a regression of
current values of several variables to the available historic values of the same variables. Different
variables here are understood as channels of measurement, and an entire covariance matrix is
defined in a following way:
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where R ik is a  p× p covariance matrix of the same variables in the i-th and  k-th surveys.

28. Simultaneously, p variables are predicted. We will define them as xk vector:
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where Ai
T are the matrix of the autoregression coefficients, which are determined by the

following equation:
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where PR is a covariance matrix for residual errors.

29. A maximum entropy solution (2.19) for the matrix coefficients Ai may be written as
follows:
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30. Solutions corresponding to other values of entropy may be obtained by the following
equation:

(2.21)
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where R(σ)kk = Rkk – σ2I; 0 ≤ σ2 ≤ λmin  and λmin  is the minimum eigenvalue of the matrix R.

V. AN APPLICATION TO THE SURVEY OF HOUSEHOLDS

31. Regression models with variations of entropy discussed above provide a set of estimates
for each value to be imputed, of which the values satisfied all edits could be chosen. Now, we
consider some examples of these estimates in view of quarterly household's expenses survey
data.

32. Table 1 shows the estimates with different rates of entropy and the reported values of the
expenses of households on food in the 4-th quarter 1999. The estimates on the basis of
autoregression with maximum, minimum and medium levels of entropy have been obtained from
11 previous surveys.

Table 1. Autoregression estimates
Household #Estimate type
1 2 3 4 5

Reported value 1567 3070 1757 1698 2301
Minimum entropy 1 2320 3541 1884 906 2018
Medium entropy 1 2064 3581 1727 956 1741
Maximum entropy 1807 3622 1570 1004 1464
Medium entropy 2 1551 3663 1414 1054 1188
Minimum entropy 2 1294 3704 1257 1104 911

33. Related estimates for values to be imputed have been obtained on the basis of multiple
regressions with variations of entropy. As independent variables were chosen expenses of
households in the 4-th quarter 1999 on: (1) bread and bakery products; (2) meat and meat
products; (3) milk and dairy products. The dependent variable is expenses of households on
butter, margarine and fat. The results of the estimation of imputed values are presented in
Table 2.
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Table 2. Multiple regression estimates

Household #Estimate type
1 2 3 4 5

Reported value 416 123 370 169 130
Maximum entropy 283 186 298 206 91
Medium entropy 279 202 284 185 105
Minimum entropy 249 285 208 106 206

43. Finally, we should note that the suggested approach for obtaining a set of linear
regression estimates for each data item to be imputed is applicable both to longitudinal and to
cross-sectional surveys. In either case, the results of using these techniques may be as follows:

i) The opportunity to choosing the imputed value from a set of regression estimates,
resulting in a higher probability to pass all the edits by an imputed record.

ii) The provision of more realistic standard errors of imputed values in comparison with the
reported values by using a set of regression estimates with different levels of entropy in
accordance with the multiple imputation method.
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