SPATIAL TRANSFORMATION METHODS FOR GEOGRAPHIC DATA

David Briggs¹, John Gulliver², Ken Field³ and Samantha Cockings¹

- Department of Epidemiology and Public Health, Imperial College of Science, Technology and Medicine, London
- Nene Centre for Research, University College Northampton
- School of Environmental Sciences, University College Northampton

- Scientific-co-ordinator CORINE Programme, mid-late 1980s
- Advisor to WHO on environmental health indicators and GIS
- Professor of Environment and Health Sciences, Imperial College
- Responsible for GIS in Small Area
 Health Statistics Unit
- Work here based on short study for Eurostat, with Huntings plc

THE NEED FOR SPATIAL TRANSFORMATION

Different types of SE data are collected on the basis of different administrative zones

Environmental data often do not relate to administrative zones

Zone systems change over time

Administrative zones are often inconsistent within and between countries

Mapping on the basis of discrete areas may be misleading

TRANSFORMATION METHODS

Aggregation: summation/averaging of data into larger, nested units

Disaggregation: subdivision of data into smaller, nested units

Interpolation: estimation of data for unsampled points/areas

Redistricting: growth of new spatial units by merging of existing units

Map smoothing: re-estimation of data for small-areas, taking account of errors in data

CASE STUDIES					
Transform- ation	Technique	Data	Source zone	Target zone	
Disaggreg- ation	Areal weighting	Population	NUTS 3	NUTS 5	
Disaggreg- ation	Regression mapping	GDP (+ population)	NUTS 3	NUTS 5	
Area interpolation	Control zones	Setaside (+ tilled land)	NUTS 3	Water- shed	
Surface modelling	Focal averaging	Population	NUTS 5	Surface	
Surface modelling	Centroid smoothing	Population	NUTS 5	Surface	
Map smoothing	Bayesian estimation	Health risk	NUTS 5	NUTS 5	

Modelled GDP by regression mapping						
	NUTS 3 unit	Actual GDP (m Euro)	Sum of modelled GDP (m Euro)	Weight (ratio actual/ modelled)		
	R2211	4633	3529	1.31		
	R2221	9110	6234	1.46		
	R2301	45486	25649	1.77		
	R2402	3192	2306	1.38		

CONCLUSIONS

- Observers read stories from maps; maps are not neutral – the zone system influences the stories they read
- There is no one reality each zone system is a story about a different reality
- Map producers do not have the right to ignore the effects of the zone systems they use
- We need spatial transformation methods to improve (and control) the sense in the maps we produce
- Many methods are available which is best depends on the data involved, and the purpose
- Spatial transformation is modelling and involves error
- We cannot ignore the statistical issues involved in spatial transformation validation and error control are essential