AGWA and the

Integrating Climate
Adaptation into Water
Management Decisions

outhrough the AGWA Decision
are needed to see this picture.
Support System (DSS)

UNECE Water Convention • Geneva, Switzerland

John Matthews, PhD ● jmatthews@conservation.org

AGWA: A Brief Overview

- The Alliance for Global Water Adaptation
 is a group of regional and global development
 banks, aid agencies and governments, a
 diverse set of non-governmental organizations
 (NGOs), and the private sector focused on how
 to manage water resources in way that is
 sustainable even as climate change alters
 the global hydrological cycle.
- Focused on how to help practitioners, investors, and water planners and managers make systematic, consistent, and resilient decisions

What's vulnerable?

- Not all parts of the water cycle are equally vulnerable to climate shifts
- Long-lived entities are extremely vulnerable: infrastructure, ecosystems, and institutions
- They represent a balance between risks and optimizing between options
- AGWA has targeted the decisionmaking process for water management as the key vulnerability to focus our efforts

QuickTime[™] and a decompressor are needed to see this picture.

Gordon Dam in

The AGWA Decision Support System (DSS)

- The DSS is a "meta-tool" that incorporates existing tools, research, and dataproducts into decisionmaking processes
- Currently in active development methodology being tested at seven sights globally
- Current projects include urban management, ecosystems, hydropower, extractive industries
- Expert feedback process at World Water Week (September 2013); full launch in 2014

QuickTime™ and a decompressor are needed to see this picture.

"tools need process &

Looking for more

The DSS process

Three linked teams:

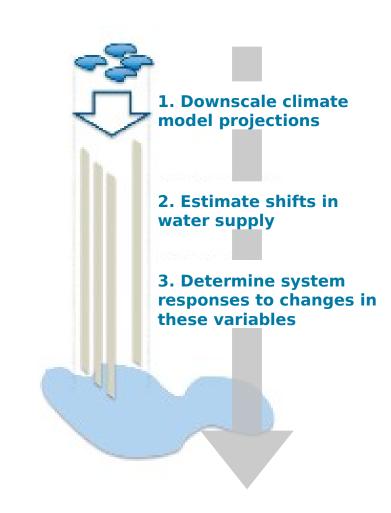
- 1. Decision content
- 2. Software development
- 3. Implementing partners/pilots

Decision content itself has four teams:

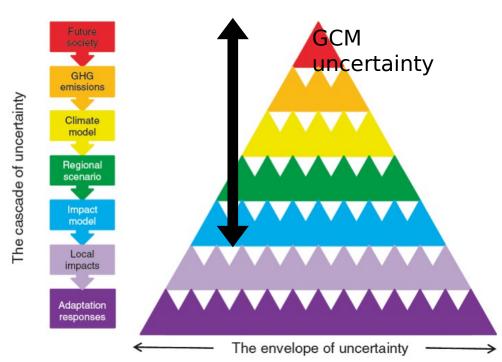
- Hydrology and Climate Science
- Economics and Finance
- Engineering and Ecology
- Governance

QuickTime™ and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.



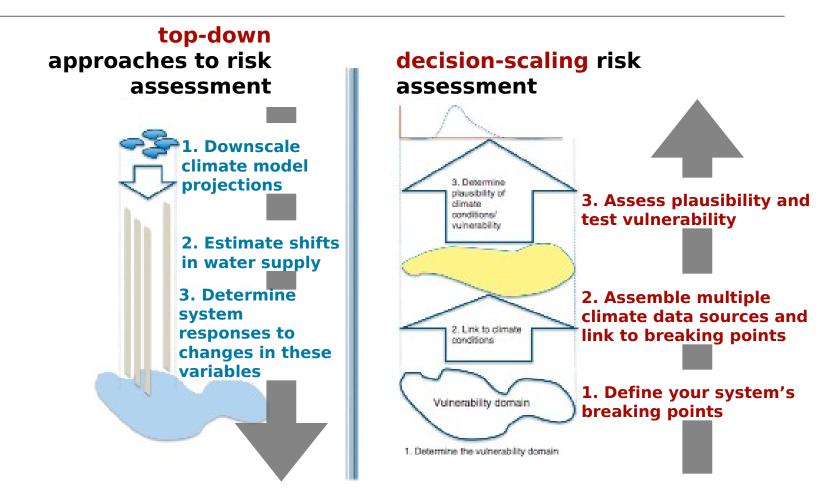
The current standard of adaptive WRM


- Use one or more climate models (GCMs)
- Generally use more than one scenario
- A few key air temperature, precipitation variables
- "Test" for vulnerability based on the constraints of the original GCMs

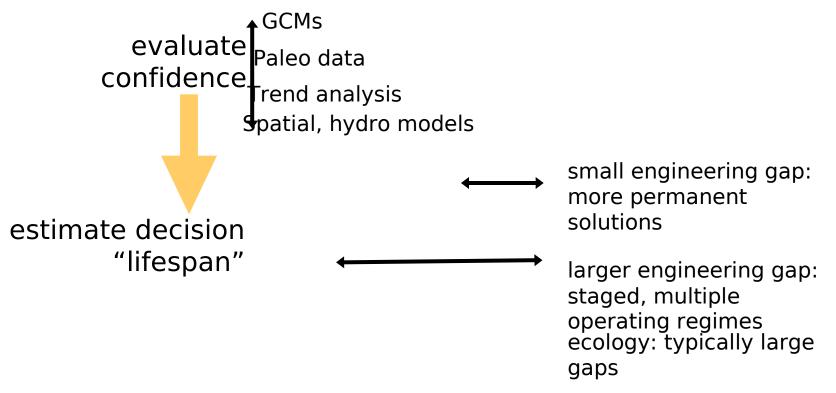
Surprise!

Climate scientists are not ecohydrologists, farmers, or water managers

Does it work?



Source: Wilby & Dessai, 2010, Weather traditional approaches to assessing risk and developing robust strategies amplify or hide uncertainty


- "Not ready for primetime" for water managers: Kundzewicz & Stahkiv (2010)
- Low confidence, especially for quantitative purposes
- Little agreement across models, scenarios
- Models not developed for adaptation purposes but mitigation, climate science hypotheses
- Climate itself is defined very narrowly

 direct impacts from a handful of variables
- Often result in a series of "no regret" options
- Stakeholders often feel disempowered source: AGWA, Caveat Adaptor, red 2018 rocess, which is often experienced as deterministic

bottom-up vs top-down approaches

engineeringurate, precise, quantitative, predictive ecoleggurate, quantitative/qualitative, explanatory

uncertainty is constrained: confidence is accrued and built

decision makers need confidence to manage water over long timescales

New contexts for Engineered Resilience

	20 th century approaches
Design Iifetime	100 – 500 years
Design constraints	hard-wired for a single climate future
Manageme nt style	Rigid, limited flexibility
Environmen tal focus	Mitigate, restore, retrospective data
Siting considerati ons	Single site

Resilient approaches

10 - 50 years?

robust to multiple futures

Modular, extensible, multiple operating regimes

Mitigate, restore, retrospective data

Single site, basin, network, portfolio QuickTime™ and a decompressor are needed to see this picture.

Many Thanks

jmatthews@conservation.org

QuickTime™ and a decompressor are needed to see this picture.

Okavango Delta,