Leak Detection Systems

Workshop UNECE / Berlin

Ted Smorenburg SABIC Pipelines Netherlands

- Pipeline incident Bellingham (US)
- Threats to pipelines
- Leakdetection systems

City of Bellingham

Washington (US)

 Incident on gasoline pipeline Olympic Pipeline company 1999

Olympic Pipeline

- 600 km metal pipeline
- 16" / 14" / 20"
- Transports gasoline
- 1965 constructed
- 100 Bar system
- Cherry point ->Renton / Seatle ->Portland
- Controlled from Renton

What happened?

- Production change from Renton to Seattle
- Problems with SCADA system / starting boosterpumps
- High pressure section 1 (15 -> 100 Bar)

<- Pipeline collapsed

- Automatic stop pipeline to safe position
- Operator resumes transport and restarts
- After 15 minutes LDS alerts
- Operator starts extra pump
- Telephone call: smell of gasoline -> operator stops transport
 Alarm / emergency procedures started

1 hour passed since Rupture!!

After 1 ½ hour the spill ignited 2 km from leak-location

Analysis

TPI

- Pipeline was hit at excavations 5 years earlier
- Too little supervision by pipeline operator

Technical

- Inspections (pigging) insufficient analysed and actions taken
- Insufficient testing on safety-valves equipment before start-up.

Operations

- Process-upset was accepted after new connection at pipeline
- SCADA procedures insufficient, LDS inadequate during upsets

Consequence:

3 death

1000 m3 spill

€45.000.000 damage

Spills per yr/1000km (Concawe)

Leakdetection systems

<u>Goal</u>

- Limiting the quantity of the spill
- Location of the spill

No prevention!!

Definitions (API 1155)

- Sensitivity: Leak size and time to detect
- Accuracy: exactness of calculated leak size and location
- Robustness: availability of the functionality under <u>transient</u> conditions:
 Starting / stopping of pumps, large transport changes
- Reliability: ability to make the correct decision

Overview Technologies

(ref: Worldwide assessment of Industry Leak detection capabilities, University Texas, 2003)

Acoustic Reacts on sudden pressure drop

- only low flow rates & little noise
- limited sensitivity at transients

Cable sensor Change in Electrical properties

- + short fuel lines / sensitive area's.
- interference with CP-system

Fiber optic detect on temperature change / micro bends / chemicals

- + promising new technolgy
- + exact locations
- limited experience

Soil monitoring addition of tracer in product

- high cost
- short pipelines
- + independent from flow

Ultrasonic flow meters clamp on. Overall volume balancing.

- + fast detection of large leaks
- little field experience

Vapor Monitoring gasdetection via reference gas (H2) and analysers

20

- + high sensitive
- slow detection
- high costs (short lines)

Mass balance $(M_{in} - M_{out})/M_{in}$ or $(F_{in} - F_{out})/F_{in}$

- + generally accepted
- + simple
- + no extra hardware
- not sensitive during transients
- requires accurate flow sensors
- no leak location

Real Time Model Mass, momentum, energy and equation of state. Calculation is compared with measured values.

- + compensates for linepacking
- + false alarm suppression
- + detects leaks < 1%
- very expensive (HW, SW, Tuning)
- high complexity, trained users!

Pressure point analyses

Statistical interpretation of pressure and flow conditions Network / blocked sections

- + Accepted technology
- + less tuning / modelling than RTM
- + existing instrumentation
- limitations in transient / batch conditions
- accuracy instrumentation

Other and new developments

- Pressure-wave detection with local pressure sensors
 (fast, large leaks, exact location, limited experience)
- <u>Ultrasonic Pig</u>
 Accurate on small leaks , batchwise
- Sniffer dogs
 Little experience (Belgium)
- Air surveillance
 - Airborne Radar, Ultra violet, Infrared, high Resolution reconnaissance photography. Proven technology
- Satellite High Res photography
 - Not proven, whether dependent
- Artificial Neural Networks
 - New. Handles transients. Promising.

Limitations on Leak detection systems

- Complexity of the pipeline operation (single flow, single product, multi flow, multi product, reverse operation)
- Availability and accuracy of measurements (flow, pressure, product)
- Product / pipeline changes
- Acceptance by operators

BETTER TO PREVENT LEAKS then LEAKS to DETECT !!