Fifty-eighth session of the Working Group on Strategies and Review Item 5 of the provisional agenda Review of sufficiency and effectiveness of the Protocol to Abate Acidification, Eutrophication and Ground-level Ozone #### Informal document on non-technical and structural measures ## Prepared by the Gothenburg Protocol Review group (GPG) Requirements under the Gothenburg Protocol include national emission reduction obligations and the implementation of technical emission limit values (ELVs) for i.e., installations, vehicles and products (ELVs). Their ultimate goal is to protect human health and ecosystems. ## **Beyond emission limit values** Implementation of ELVs only is not always sufficient to meet national emission reduction obligations or air quality targets. In such cases, additional actions in the form of "non-technical" measures could be considered, at the national or local level. This could include encouraging a faster substitution of old and polluting technologies by new and cleaner technologies, facilitating the use of cleaner fuels or feedstocks, or stimulating a greener behaviour of consumers. The latter could include a modal shift from private to public transport, dietary changes or domestic energy saving. Sometimes such measures prove to be more efficient and less costly than implementing stricter ELVs. ### Non-technical/structural measures Such additional measures are not included in the technical annexes of the protocol and are for that reason sometimes referred to as 'non-technical', voluntary, innovative or non-regulatory measures, although in reality these can still have highly technical components. For example, in the case of building insulation, solar energy, product and process redesign or advanced public transport systems. Examples of measures with almost no technical component include improved maintenance routines, reducing indoor temperature, obeying speed limits and turning off the lights when leaving the room. Examples of hybrid measures or solutions are motion-activated light switches, cruise control functionalities in vehicles, or even changes in purchase behaviour from standard technologies to environmental-friendly technologies. Often times 'non-technical measures' are associated solely with behavioural change, however it is clear that it can mean much more. Given that narrow or potentially misleading interpretation of 'non-technical measures', the broader term 'structural measures or structural changes' may be more appropriate when we refer to measures that are additional to the end-of-pipe techniques prescribed in the technical annexes to the protocol. The common feature of structural changes is that they cannot easily be implemented via permitting of specific activities. They often require a combination of actions by various players in the production chain, as well as by consumers. As the term 'structural changes' suggests, it could even include a transition towards a new economic structure that relies less on the use of fossil fuels or animals. # Implementation through policy instruments For the purpose of this informal note, we distinguish four types of policy instruments: regulatory, economic, social (information and communication) and public investments (including Research and Development¹): These instruments can be combined in various ways. Below are some examples focusing on these 4 types of policy instruments in the transport system. - 1. Regulatory instruments: some cities have closed parts of the city centres to cars or have withheld permits (e.g. for new roads). The recent lockdown has demonstrated that the regulation of vehicle activity in the event of an emergency can be acceptable. - Economic instruments: These could include a tax for polluting cars; subsidies for clean alternatives; compensation for the early scrapping of old cars; and increased parking fees in city centres.² - 3. Social instruments: These could include raising awareness, and public involvement in monitoring and city planning. Incorporating communication strategies that suggest or promote a (modal) shift toward less polluting options. These may not be able to effectively change individual behaviour but can contribute to gaining societal support for the use of one of the other policy instruments mentioned above and to adapting social norms that in turn influence individual behaviour. - 4. Public investments: These could include physical planning and targeted investment in infrastructure that could provide an important opportunity for the public sector to bring about structural change. For example, investment in public transport, the removal of parking spaces and the replacement of car lanes by bus or cycle lanes have a proven effect on traffic intensity and thus on emissions. ### **Benefits** Discussions on structural changes have taken place over a number of years. The 2007 report of the TFIAM on the review of the original Gothenburg protocol already concluded: "In addition to available end-of-pipe emission control measures, <u>non-technical and local measures</u> will be of increasing relevance, especially <u>if multiple policy objectives are pursued</u>." ³ This conclusion is still relevant and has become even more pertinent in order be able to meet long-term targets of the Air Convention. The benefits for putting more emphasis on structural measures are: - 1. Non-technical measures/structural changes will lead to lower air pollution control costs to reach certain objectives than if estimated on the basis of end-of-pipe measures. - 2. In general, GAINS optimizations do not take into account the potential for structural changes nor the potential for non-technical and local measures. GAINS has a focus on add-on technical solutions (measures with direct impact on the emission factors). Structural changes can be simulated by introducing changes in the baseline activity levels (i.e. the energy scenario input data). This requires analyses using a set of linked European wide models, e.g. for energy use (PRIMES), agriculture (CAPRI) and transport (COPERT), but also input from national and local experts on envisaged or potential structural changes would be valuable. - Structural measures will have larger (synergetic) reduction potentials than simple add-on controls addressing one pollutant by reducing emissions of different air pollutants (as well as greenhouse gases) simultaneously. ¹ The outcome of Research & Development is per definition uncertain and is excluded from further consideration. Note that the entire concept of 'nudging', which often proved to reduce household energy consumption with some 5-10%, originated from decades of research in behavioural economics. ² See Guidance document on economic instruments to reduce emissions of regional air pollutants, 2013: https://www.unece.org/fileadmin/DAM/env/documents/2013/air/eb/ECE_EB.AIR_118_ENG_01.pdf. ³ See TFIAM report on the review of the Gothenburg protocol, 2007: http://www.unece.org/fileadmin//DAM/env/lrtap/TaskForce/tfiam/TFIAM_ReportReviewGothenburgProtocol.pdf - 4. Given policy developments in other areas (climate, energy, nutrient management, transport, agriculture, biodiversity, ...) it is more prudent to take into account other measures than only technical end-of-pipe techniques (ELVs in the technical annexes). A switch to cleaner fuels and cleaner technologies, energy saving and energy efficiency action, structural changes in transport or agriculture, behavioural changes in diets, modal shift to public transport could prove to be more cost-effective than applying end-of-pipe technologies. This may reduce the relevance of setting stricter ELVs as a means to further reduce emissions in the longer term. - 5. Structural change could play a key role to further reduce emissions in sectors such as domestic wood combustion, transport and agriculture: - For domestic wood burning (a coherent package of) 'non-technical' measures are likely to be more effective and suitable than technical measures for the reduction of emissions: for instance: (i) scrapping or mandatory replacement programs to accelerate the removal or replacement of old and polluting stock, (ii) bans, (iii) installation and regular maintenance schemes, (iv) encouraging good burning practices, (v) energy renovation (reducing heat demand), etc. All these measures will likely be more effective than retrofitting the existing stock with a catalyst or an ESP (technical measure). See the new code of good practice for solid fuel burning (TFTEI). ⁴ - For mobile sources 'non-technical' measures could include enhanced inspection and maintenance schemes, environmental zones, scrapping schemes and modal shifts. - For agriculture a behavioural change to reduce milk and meat consumption could form a powerful way to reduce emissions of ammonia and methane. A structural shift towards less intensive farming could also contribute to these emission reductions. See also the 2017 report from IIASA on measures to address air pollution from agricultural sources.⁶ ## Challenges There are however still a number of challenges that need to be addressed and resolved. One of these challenges is to estimate the costs and effects of such measures that are currently not accounted for within GAINS. As an example, the GAINS model does not consider 'transactional costs', such as public sector expenses for enforcing measures. Whilst this is not an important cost item for technical measures, it may very well represent a considerable share for several structural changes. Further, more efforts are needed to understand the perceived welfare effects of structural changes aimed at individual behaviour. Both diets and domestic wood combustion are household decisions and incentives from the public sector to change these behaviours are often met with strong opposition from citizens, despite their cost-effectiveness. It should also be taken into account that while the rates of application (implementation) of most structural measures are predictable in modelling and verifiable (ex-post), the degree of application of certain measures more closely related to behavioural changes is not predictable or verifiable with reasonable certainty (i.e. modal shift from private cars to public transport or the use of best practice in residential wood heating). The same goes for the related costs (savings or implementation costs). ### Conclusion ⁴ See Code of good practice for solid fuel burning and small combustion installations, 2019: https://www.unece.org/fileadmin/DAM/env/documents/2019/AIR/EB/ECE_EB.AIR_2019_5-1916518E.pdf ⁵ See Guidance document on emission control techniques for mobile sources, 2016: https://www.unece.org/fileadmin/DAM/env/documents/2016/AIR/Publications/ECE_EB.AIR_138_En.pdf) ⁶ See IIASA report on measures to address air pollution from agricultural sources, 2017: https://iiasa.ac.at/web/home/research Overall, exploring the potential emission reductions from structural changes during the review of the Gothenburg protocol and bring together expertise within the Convention on this topic, e.g. from TFIAM, EPCAC, TFRN, TFTEI and the Parties would be recommended.