

Achievements of the ICP Vegetation progress with 2019-2020 work plan

Felicity Hayes, Katrina Sharps

ICP Vegetation Coordination Centre*, UKCEH

* Financial support provided by Defra (UK) and UNECE

Changes ICP Vegetation per 1 April 2020

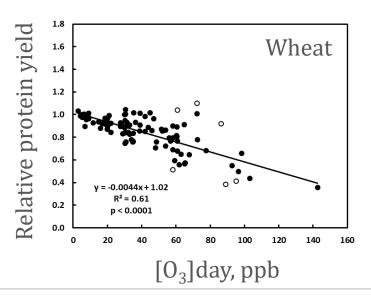
Felicity Hayes Chair Task Force

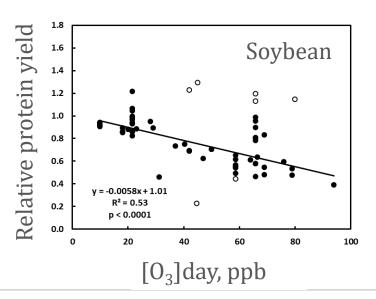
Katrina Sharps Head Programme Centre

Amanda Holder Research Associate

Mike Perring Research Associate

Task Force meeting 2020 - Latvia




Hosted by the University of Latvia. 27-30 January 2020 Attended by 62 participants from 22 countries

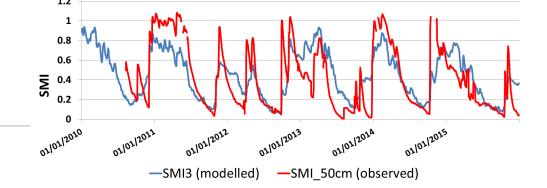
Overview of the achievements in 2019, and discussion of draft workplan for 2020-2022.

Interactive impacts O₃ and N (1)

- □ Crops Currently no clear evidence for a need to adapt ozone CLs for N availability
 - Sufficient data for wheat only (89 data points from 29 data sets): N application did not affect response of grain yield, grain protein concentration and grain protein yield to ozone
 - Protein yield (accounting for seed yield and protein content) is affected by ozone in wheat and soybean – ↓nitrogen use efficiency

Interactive impacts O₃ and N (2)

- lacktriangle Semi-Natural vegetation Negative O_3 effect on photosynthesis, stomatal conductance, growth and biomass production not affected by N
- **Mediterranean vegetation** Interactions are species and parameter-specific and non-linear:
 - \triangleright Combined O_3 and N can induce shifts in species abundance in annual pasture (potential biodiversity changes; Calveto-Sogo et al., 2016)
 - \triangleright Exposure to O_3 reduced fertilization effect of N in annual pasture (biomass, seed production, photosynthetic N use efficiency)

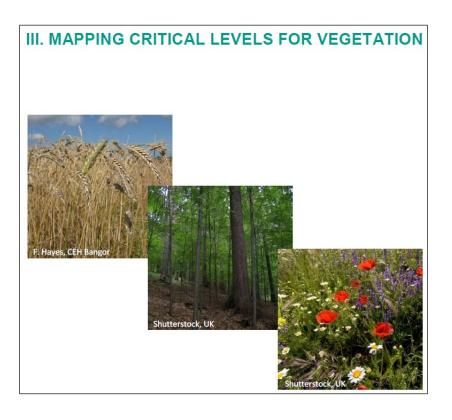


Modelling ozone flux in soil moisture limited areas

- ☐ Coordination: CIEMAT, Spain. Collaboration: EMEP/MSC-West, ICP Forests
- ☐ **Aim:** Improving large scale flux-based risk assessment applications
- ☐ Output: Ozone flux maps adapted for SML areas (2020)

Improving and validating soil moisture index (SMI) EMEP model:

- ➤ EMEP/MSC-W modelled SMI data compared with site-specific soil moisture data in Spain and Italy (also Sweden & Switzerland)
- Case study holm oak site in Spain (2010 2015):
 - SMI mimics well seasonal and inter-annual variations
 - SMI slightly over-estimates soil moisture on average
 - SMI less accurate in spring and summer

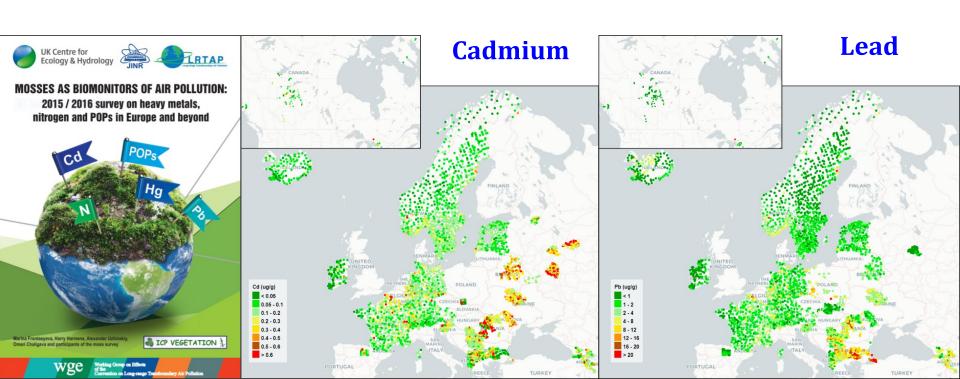


Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Chapter 3 modelling and mapping manual

https://icpvegetation.ceh.ac.uk/get-involved/manuals/mapping-manual

- ☐ Preparing for review of the Gothenburg Protocol
- □ Reviewing and re-introducing parameterisations related to leaf area index for upscaling to canopy level and large scale modelling (e.g. EMEP, IAM)
- □ David Simpson (EMEP/MSC-West) is including parameterisation for (semi-) natural vegetation in the EMEP model for calculating POD₁IAM


Scientific Background Document B

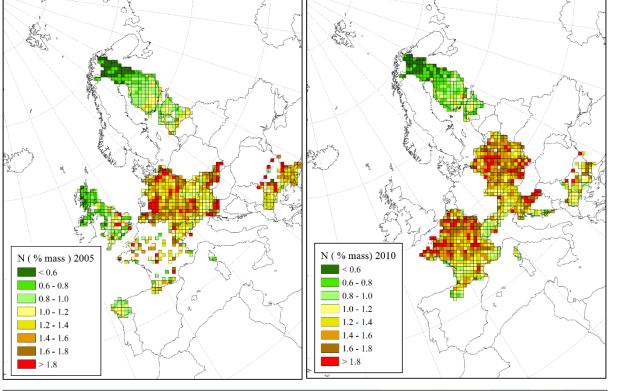
https://icpvegetation.ceh.ac.uk/get-involved/manuals/mapping-manual

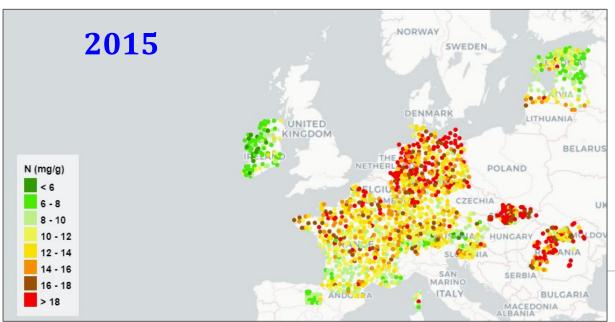
New Chapters now available:
☐ Guidelines for gap filling in ozone flux modelling data ☐ Interactive impacts of ozone and nitrogen on vegetation
Upcoming Chapters:
 □ Improved phenology for ozone flux modelling in trees □ Ozone removal by vegetation in urban areas □ Impacts of ozone on pasture quality'

Moss survey 2015/16

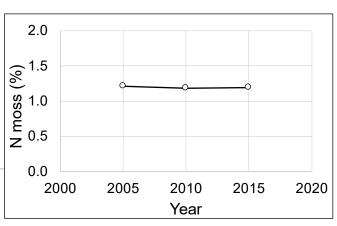
- ☐ North-West to South-East gradient in Europe
- ☐ High concentrations in (south-)east due to anthropogenic sources and high wind-resuspension?
- ☐ Final report for 2015/2016 now available

Moss survey 2020-2022


□ Next survey 2020-2022:
Call for data issued (HM, N, POPs)


- ☐ Include pilot study on mosses as biomonitors of microplastics as indication of atmospheric deposition rates
- Monitoring manual: **English and Russian**https://icpvegetation.ceh.ac.uk/get-involved/manuals/moss-survey

Countries already participating in moss survey 2020-2022							
Albania	Germany	Kazakstan	Russia	Vietnam			
Armenia	Greece	Latvia	Slovakia				
Georgia	Italy	North Macedonia	Sweden				

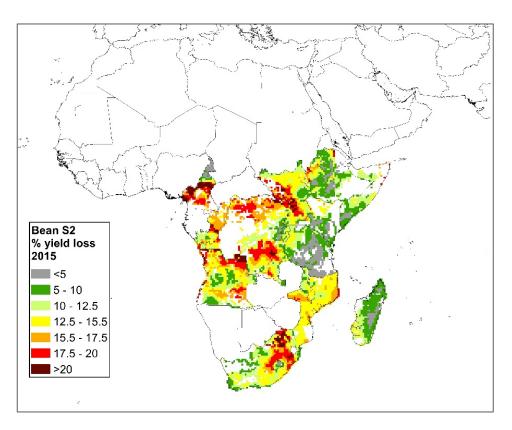


N in moss

- ☐ Every 5 years since 2005
- Concentrations lowest in northern/western Europe, highest in Central Europe
- No significant decline between 2005 - 2015

Outreach activities

- ☐ Bean biomonitoring ongoing in India, Pakistan, Hong Kong, Vietnam, Malaysia
- □ 24 26 Sept 2019: Ozone training workshop for African crop scientists, Bangor, UK
- □ Ozone injury factsheets to be included in 'knowledge bank' in Plantwise programme ('Lose less, feed more' https://www.plantwise.org)
- □ 5 7 Nov 2019: Fifth Asian Air Pollution workshop and stakeholder meeting, Varanasi, India



Maps of predicted impacts on yield

- □ % yield loss for common beans
- Modelled ozone flux data (for 2015) from EMEP MSC-W.
- □ >20% estimated yield loss for some areas.

Sharps et al., (under review)

Yield benefit from air filtration

Crop	China (17-65 ppb)	India (33-56 ppb)	Thailand (25 ppb)	Malaysia (32 ppb)	Egypt (25-56 ppb)
Broad bean					39-41%
Cowpea					0-13%
Maize	9%	4-31%			
Mustard		7-19%			
Palak		27%			
Poplar	4%				
Rice	2%	17-22%	6-17%	0-6%	
Soybean	0-9%	30%	16-18%		51%
Wheat	2-25%	13-26%			61%

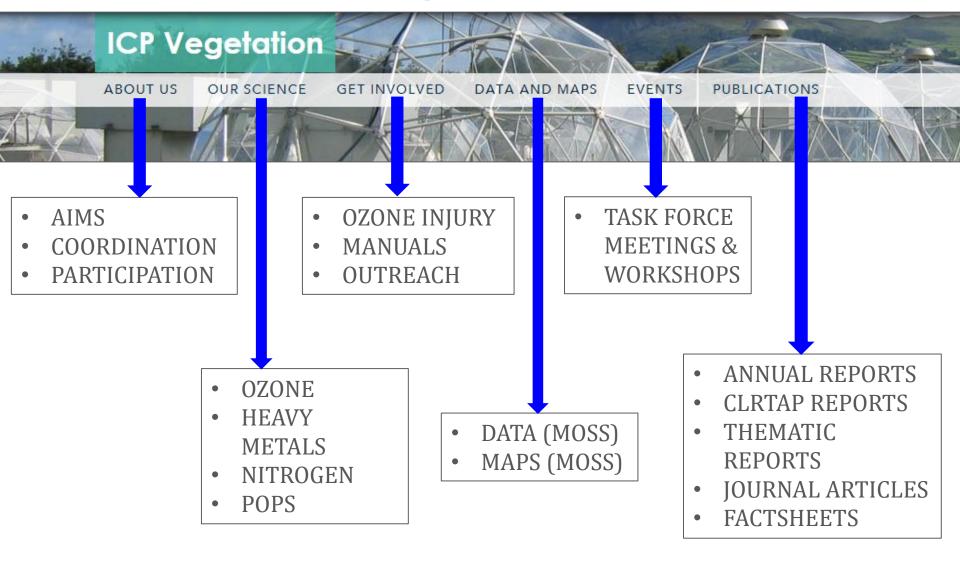
Data from a range of published studies 2004-2019

Work plan 2020-21

- □ Ozone flux-based risk maps soil moisture limited areas (EMEP/MSC-W) (20)
- \square Review interactive impacts of ozone and nitrogen on vegetation (20)
- □ Contribution to improve estimation environmental benefits of decreasing ozone through mitigation of methane emissions (various Convention bodies; HTAP workshop: 22-24 April 2020, Edinburgh, UK) (20)
- □ Ozone flux-based risk assessment for vegetation at various air pollution scenarios (EMEP/MSC-West, TFIAM, CIAM) (21)
- ☐ Test development and applications of photosynthesis-based flux-response models (EMEP/MSC-West) (21)
- □ Contribution to validation and revision of empirical critical loads for N (CCE, ICP Modelling and Mapping) (21) Call for data HM, N, POPs concentrations in mosses (final report 2024)
- □ Call for data HM, N, POPs concentrations in mosses (final report 2024)

Other ICP Vegetation activities

Report on ozone impacts on crops in developing regions (2020)
 Joint workshop with Agricultural Model Intercomparison and Improvement Project (AGMIP) on inclusion of ozone damage functions in crop growth models (2020)
 Comparison of spatial patterns and temporal trends of heavy metals in mosses and EMEP-modelled deposition (with EMEP/MSC-East)


Air pollution & plants conference, Paphos, Cyprus, May 2021:

- CaperMed (Committee of Air Pollution Effects Research on Med. Ecosystems)
- > 3rd Ozone and Plants Conference (co-organised by ICP Vegetation)
- > 30th Int. Conf. IUFRO Research Group on 'Air pollution and climate change' http://cyprus2021.com/

http://icpvegetation.ceh.ac.uk

Thank you

ICP Vegetation have been preparing for the upcoming review of the Gothenburg Protocol by reviewing and re-introducing parameterisations to allow large scale modelling of impacts of ozone on crops and seminatural vegetation.

Updates to scientific knowledge suggest that ozone critical levels do not need to be modified to account for nitrogen availability in crops. However, reductions in nitrogen use efficiency can occur with increasing ozone pollution.

The results from the previous moss survey (2015/16) are now published. There is a call for data from a 2020-2022 (extended sampling year due to Covid-19). Some countries have already indicated their participation, with some also participating in a pilot study to investigate the presence of microplastics in mosses.

Outreach activities continue, to raise awareness and to share skills and expertise.

