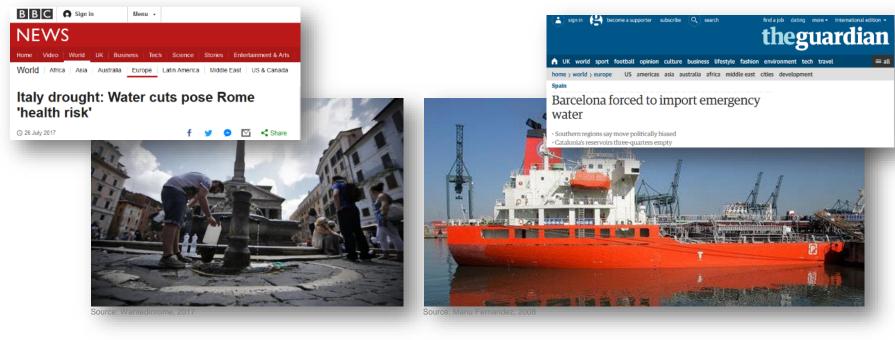
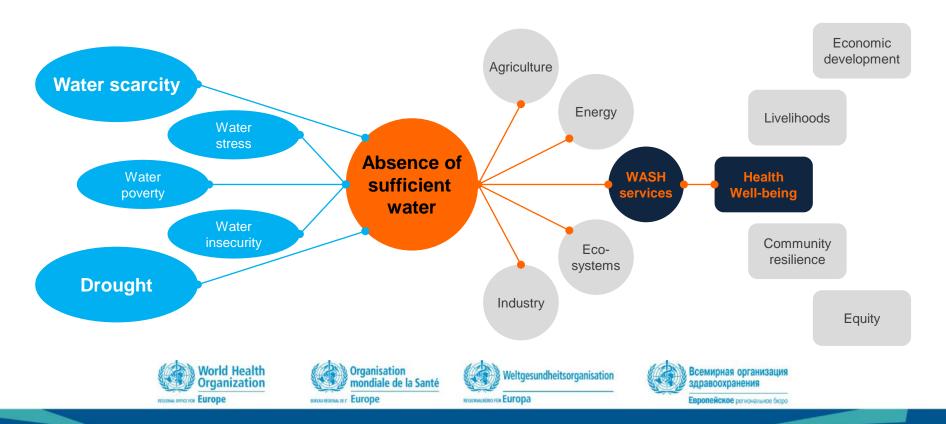
Water scarcity and health

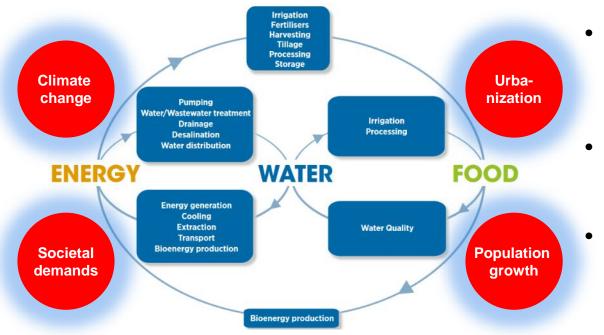
Oliver Schmoll Vladimir Kendrovski Ali Al-Luaibi

WHO European Centre for Environment and Health Water and Climate Programme



Prevailing realities



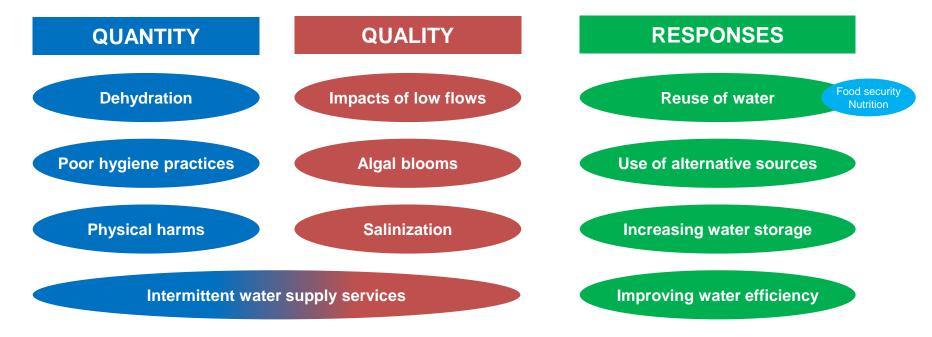


Babylonian scoping

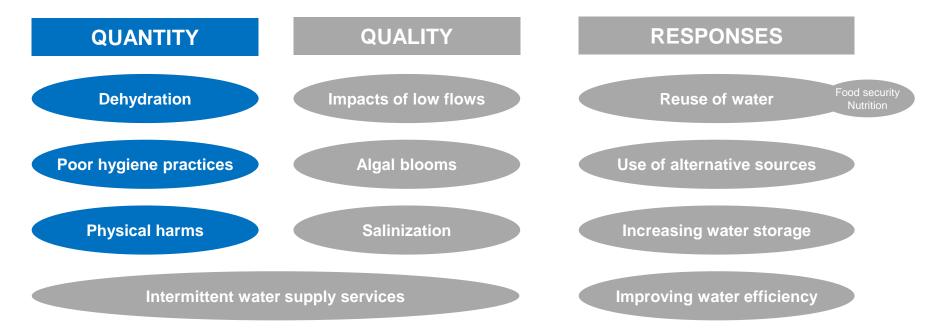
Global pressures & water-energy-food nexus

- Each 1°C increase caused by global warming is to result in a 20% reduction in renewable water resources
- By 2025, 1/3 of the world's population is estimated to live in water-stressed areas
 - EU areas under water stress are to increase from 19-35% (by 2070s), with an additional 16-44 million people affected

Source: Adapted from International Renewable Energy Agency, 2015: Renewable Energy in the Water, Energy & Food Nexus



Water scarcity impacts



Water scarcity impacts

Hydration and hygiene

Service level	Distance/time	Likely volumes of water collected	Needs met
No access	More than 1 km and/or more than 30 min round trip	Quantity collected often below 5 I/c/d	 Consumption – cannot be assured Hygiene – not possible (unless practised at source)
Basic access	Within 1 km and 30 min round trip	Average quantity unlikely to exceed approximately 20 I/c/d	 Consumption – should be assured Hygiene – handwashing and basic food hygiene possible; laundry/bathing may occur off-plot
Intermediate access	Water provided on-plot through at least one tap (yard level)	Average quantity of approximately 50 l/c/d	 Consumption – assured Hygiene – all basic personal and food hygiene assured; laundry/bathing likely to occur on-plot
Optimal access	Supply of water through multiple taps within the house	Average quantity of 100-200 l/c/d	 Consumption – all needs met Hygiene – all needs should be met

Source: Howard & Bartram 2003

Hydration and hygiene

Dehydration and physiological effects

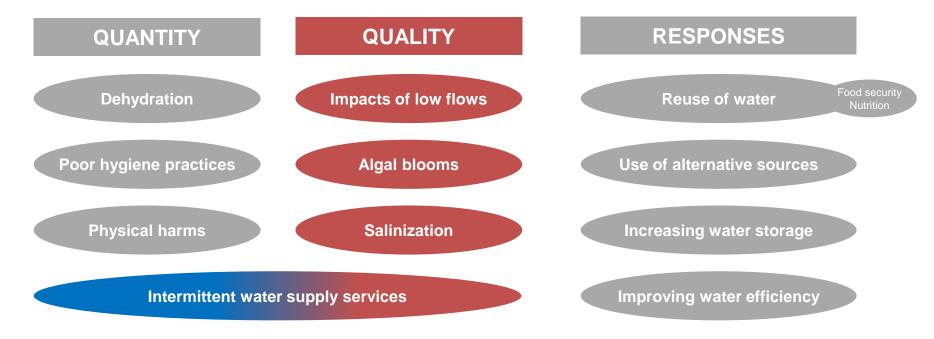
Compromised personal, domestic and food hygiene

HEALTH CARE FACILITIES

- Safe childbirth
- Maternal and new born health
- Infection prevention control
- Operation theatre
- General hospital hygiene

Carrying the weight of water

- Common among the rural poor
- Longer distances to (alternative) sources
- Carrying heavy containers causes pain, physical injury, and contributes to musculoskeletal disorders
- Impacts on children's school attendance
- Woman and girls may be subject to harassment



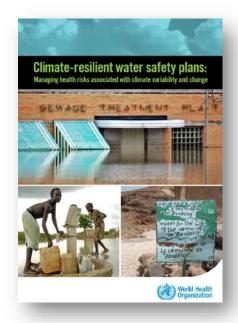
Water scarcity impacts

Impacts on water quality

- Lack of dilution of chemical and microbiological pollution during low flows:
 - Wastewater and land management
 - Intense rainfall after long dry spells leading to rapid runoff of chemicals and faecal matter
 - Algae proliferation, including cyanobacteria
- Accelerated demands on source water and drinking-water management and treatment

Intermittent supply

- Major determinant of water quality
- Low water pressure increases risk of ingress of contaminated water into the system and backflow
- Increases risk of waterborne disease
- Household water storage
- Use of potentially unsafe alternative sources



WSP: Safely managed water services

Recreational aspects

- Recreational exposure
- Stagnation and water-based diseases:
 - Dracunculiasis (ingestion)
 - Schistosomiasis and leptospirosis (skin contact)
- Loss of health and well-being benefits of urban water environments

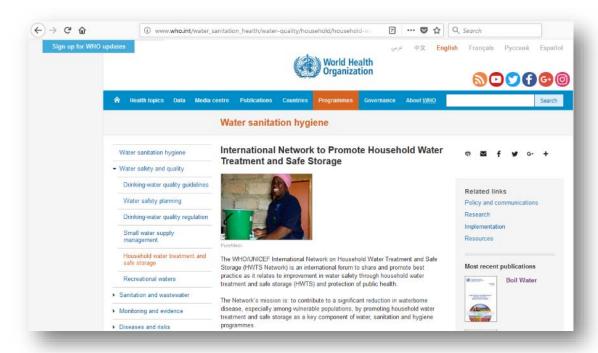
Water scarcity impacts

QUALITY RESPONSES QUANTITY Food security Impacts of low flows Reuse of water **Dehydration Nutrition** Use of alternative sources Poor hygiene practices Algal blooms **Physical harms** Salinization **Increasing water storage** Improving water efficiency Intermittent water supply services

Water storage and vectors

- Increased household water storage during periods of scarcity provide larval habitats and breeding sites for mosquitoes (malaria and dengue)
- Safe storage practices

Example: Warm winter increased the number of *Aedes aegypti* breeding sites in Brazil potentially supporting Zika virus spread during a typically low-transmission season.




Safe household water storage & treatment

Use of alternative sources

- Increased reliance on poor quality sources, which are more yielding or closer:
 - Surface water (stream, dam, lake, pond, canal)
 - Unprotected springs or dug wells
- Increased risk of waterborne disease

- Rainwater harvesting at local scale
- Desalination as large scale augmentation

Water reuse

- Wastewater treated or processed to a certain standard suitable for reuse
- Quality requirements need to be tailored to the requirements of end usage
- Direct reuse and indirect reuse, including potable reuse
- Examples: Australia, Israel, Singapore, Spain and USA

Water reuse & treatment levels

Primary treatment	Secondary treatment	Tertiary treatment	Advanced treatment		
Increasing levels of human exposure, increasing levels of treatment					
No uses recommended	Non-food crop irrigation	Food crop irrigation	Indirect potable reuse: Groundwater		
	Restricted landscape usage	Landscape and golf course irrigation	recharge of potable aquifer and augmentation of		
	Non-potable groundwater recharge	Toilet flushing	surface water reservoirs		
	Wetlands and stream augmentation	Vehicle washing			
	Industrial cooling				

Source: Adapted from US EPA Guidelines for Water Reuse 2012

Reuse of wastewater in agriculture

Ingestion (unintentional) after contact with wastewater

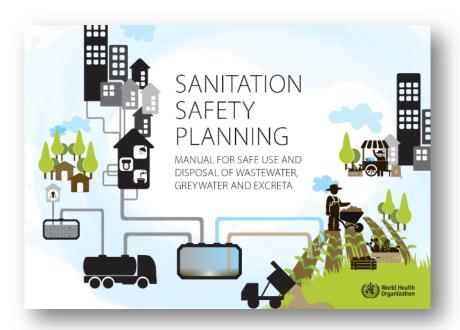
Ingestion of contaminated water

Consumption of contaminated produce

Dermal (skin) contact with excreta and wastewater

Vector-borne with flies/mosquitoes

Inhalation of aerosols and particles



SSP: Safe management of reuse

Conclusions

- Ensure access to safe sources and allocate sufficient amounts of water for drinking-water supply, including for health systems
- Integrate "health needs" in bigger water management picture
- Build climate-resilient water & sanitation services in response to changing water quality and quantity patterns
- Promote WSPs and SSPs as public health benchmarks to ensure safely managed services, including in scarcity scenarios
- Establish health-based targets (regulations) guiding scarcity response strategies to prevent collateral health damages

Thank you

