

TOOLS FOR A NEXUS ASSESSMENT LUCIE PLUSCHKE FAO MARK HOWELLS KTH

SCALE OF ANALYSIS THAT HAS BEEN UNDERTAKEN

- Global (IIASA, MIT, PBL etc. IAMS, Global Climate Calculator, GLUCOSE)
- Regional (MIT, SEI, FAO, UNECE, Basin models + regional IAMS)
- National (Mauritius, BKF, Saudi, Islands, Nicaragua, Bolivia, Uganda etc)
- Local (Arizona, California, Biofuel toolkits case studies)

SECTORAL SCOPE OF MODELS

- Some models are 'single systems' models that become 'soft-linked'
 - Agriculture: Cropwhat, Aquacrop, AEZ
 - Water: WEAP, Remote Sensing
 - Energy: LEAP, OSeMOSYS, TIMES/MARKAL
 - Ecosystems: Remote sensing
 - · Economy: IO, CGE, etc.
- Some models are extended systems (TIMES/MARKAL+ WB Thirsty Water)
- Some are combined models (LEAP-WEAP)
- Some are single integrated systems models (Texas A&M, Matlab, GAMS, Glucose, Systems Dynamics)

MECHANICS OF THE TOOLS

- Qualitative Scenarios
- Systems Dynamics (i.e. physical mass and energy balances)
 - Helps create consistent scenarios
 - Thermodynamically, mass balances, water flows
- Cost-benefit analysis (MCDA, Accounting, Optimization etc)
- Integrated economic models

TOOL CHARACTERISTICS WHERE TO TOOLS ASSIST:

(1) Mapping and diagnostic

 Desk study: National Indicator based; Spatial indicator; Dialogue

(2) Analysis

 Geographical scope of previous applications: Data intensity and requirements: Modelling intensity/technical capacity required: Stakeholder inclusion: Sectors and Nexus/nexus interlinkages modelled / sectors involved

(3) Evaluation (Extent of nexus interaction/stress/solution)

Indicator based; Qualitative;
Quantitative

(4) Communication

Online tools: Info graphics;
Workshops

TOOL CHARACTERISTIC: SPECIAL CHARACTERISTICS

A. Accounting

- -Resource only
- -Cost-benefit (using single or multicriteria)
- -Optimizing (i.e. finds 'best solution')

B. Representation of policy and scenarios

- Explicit technological detail (y/n)
- Use of concurrent / consistent drivers for resource chains

C. Resource dynamics

- Consider hydrological constraints (i.e. water flows)
- Consider trans-country interactions (trade/flows)
- Single 'node' (i.e. overall mass / water / energy balance)
- GIS based representation of resources

D. Other

- Please add and define

TOOLKITS: MODELS VERSUS FRAMEWORKS

- UNECE Nexus, FAO Nexus, CLEWs are frameworks. They shrink-to-fit and use tools / arguments / analysis available to support and direct future work. SEA is a rigid framework.
- LEAP-WEAP etc. are analytical models. They have strengths and limitations. Their utility is a function of the question to be answered, time on hand and data available.

COMMUNICATION, CONFLICT, DIALOGUE

Recognising the context in which assessments are carried out...

