Robust Adaptation to Climate Change A Decision Tree for Water Planning

Casey Brown

Associate Professor of Civil and Environmental Engineering University of Massachusetts

Partners: Patrick Ray, Luis Garcia, Diego Rodriguez, Marcus Wijnen, many others

UMass Hydrosystems Research Group

Integrated Basin Planning under Uncertainty

 "When we try to pick out anything by itself we find that it is bound fast by a thousand invisible cords that cannot be broken, to everything in the universe." *Muir (1869)*

• "All solutions are provisional and local." Briscoe (2014)

• "Everyone has a plan until they get punched in the face" Mike Tyson (US Heavy Weight Boxer) via Briscoe.

3

What is a Water Planner to do?

- Investments in the water sector are potentially significantly impacted by climate change
- Assessment of climate change risks is required
- Climate change may cause the project goals to not be met
- Unclear how to use climate information to aid decisions

A standard process for Project Evaluation for Climate Risk is needed!

Risk or Opportunity?

- Instead of focusing on *risk*, there is an opportunity for developing <u>robust projects</u>
- <u>Approaches available</u> that lead to projects that are more robust to climate change and other uncertainties
- Also helpful in addressing <u>contrasting objectives</u> of constituencies
- <u>Guidance</u> needed to navigate these approaches

Uncertainty Management (de Neufville et al., 2004)

Climatic outcome (e.g., rainfall, production)

Why is this difficult?

- How will the science improve decisions?
- Usual mode of engagement: Prediction centric
 - Science reduces the uncertainty affecting the decision
 - E.g., Science: the most likely future condition is A
 - Decision under Future A, Option 1 is my best choice
- Mode of engagement under climate change
 - Science characterizes uncertainty (*may increase*)
 - E.g., Science: here is a wide range of possible futures, and we're not sure they delimit the true range
 - Decision um …

Now What?

7

The Decision Tree for Climate Risk

- Guidance for conducting Climate Risk Assessment for water infrastructure
- Designed to <u>screen first</u> and increase analysis only if required
- Bottom up = Project focused

Decision-centric Climate Science

"Decision Scaling", Brown and Wilby, 2012 (EOS)

A "Checklist" Approach

- Straightforward to implement
- Defensible process passes the board
- Hierarchy of effort
 - Screening level vs detailed assessment
- Adds value to the process
 - More robust to uncertainty
 - Builds consensus among constituencies

Decision Tree for Climate Risk Assessment

Decision Tree Step 4: Climate Risk Management

DECISION SCALING

Stage 4 Examples

Decision Scaling Project Sites

- Great Lakes of North America
- Kosi River Basin, Nepal
- Indus River Basin, Pakistan
- Niger River Basin
- Colorado Springs Water Supply
- Northeast US Water Supply (NYC, Boston, Providence, Hartford, Springfield)
- California Department of Water Resources
- Texas Water Supply (Fort Hood)
- Southeast US (Appalachicola-Chattahoochee-Flint

BUILDING A BET

Colorado Springs' Water Supply System

Climate Stress Test

Precipitation Mean (% Change)

Colorado Springs (USAFA): Future Conditions

Colorado Springs (USAFA) Water Assessment

Colorado Springs (USAFA): Demand Reduction Scenario

Assessment of Climate Risks to the Niger Basin Investment Program

- Investment plan of \$8 billion over next 20 years
- Team: Brown, Yonas Ghile, Ken Hunu, Amal Talbi, N. Harshadeep, Tony Garvey, Johan Grijsen, Aondover Tarhule, Hrishi Patel

SDAP development of the Niger River Basin

The future is uncertain ...

29

Wet Season Rice

Irrigation Sensitivity - Wet Season Rice

Models agree on low risk!

Conclusion

- Planners need guidance on how to plan for the uncertainties associated with climate change
- Decision Tree designed as straightforward and defensible process for assessing climate risks
- Informed by but not driven by climate model projections
- Climate Informed Decision Analysis can leads to plans that are robust to climate (and other) uncertainties

Questions: <u>casey@umass.edu;</u> hydrosystems.ecs.umass.edu

Further Reading

- Brown, C. and R. L. Wilby (2012), <u>An alternate approach to assessing climate risks</u>, *Eos Trans. AGU*, 93(41), 401, doi:10.1029/2012EO410001.
- Moody, P. and C. Brown (2012), Modeling stakeholder-defined climate risk on the Upper Great Lakes, Water Resources Research, 48, W10524, doi:10.1029/2012WR012497.
- Brown, C., Y. Ghile, M. A. Laverty, and K. Li (2012), <u>Decision scaling: Linking bottom-up vulnerability</u> analysis with climate projections in the water sector, *Water Resour. Res.*, doi:10.1029/2011WR011212.
- Brown, C., Werick, W., Fay, D., and Leger, W. (2011) "<u>A Decision Analytic Approach to Managing</u> <u>Climate Risks - Application to the Upper Great Lakes</u>" Journal of the American Water Resources Association, 47, 3, doi/10.1111/j.1752-1688.2011.00552.x.
- Hallegatte, S., Shah, A., Lempert, R., Brown, C., and S. Gill (2012) "Investment Decision Making under Deep Uncertainty: Application to Climate Change. <u>World Bank Policy Research Working</u> <u>Paper #6193</u>.
- Brown, C. (2011) "Decision-scaling for robust planning and policy under climate uncertainty." World Resources Report, Washington DC. Available online at <u>http://www.worldresourcesreport.org</u>