Development and Evaluation of EUROSID-2 (ES-2) Dummy

Dr. Michiel van Ratingen
on behalf of
European Enhanced Vehicle-safety Committee

Side Impact Dummies

- ECE Regulation 95 uses <u>EUROSID-1</u> Side Impact Dummy as of October 1, 1998
- Accepted in Europe and Japan but <u>not</u> used in FMVSS 214
- EUROSID-1 and US.SID both represent 50th percentile male adult

History EUROSID-1 Development

1980 1985 1990

1978-1981
EEVC Biomechanics
MIRA-ONSER50-APROD

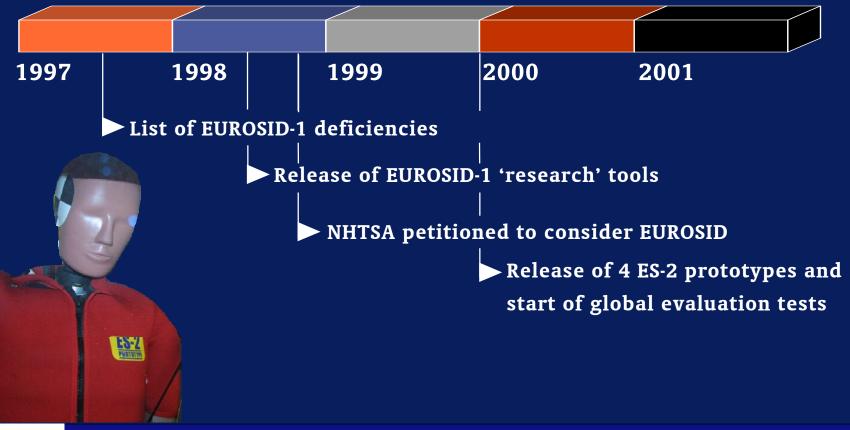
1986-1989


EEVC/EC Evaluation/Production EUROSID-1 production dummy

1983-1985
EEVC/EC Component Development
EUROSID prototype

Harmonisation Goal

Provide improved side impact dummy design <u>based on</u>
 <u>EUROSID-1</u> that is world-wide acceptable <u>in the interim</u>
 up to the moment that a more advanced tool is
 introduced


Motivation

- "WorldSID" dummy is being developed but harmonisation could be reached earlier based on existing design
- EUROSID-1 is most widely used regulatory side impact dummy
- Deficiencies that prevent acceptance world-wide are known and can be addressed in the short term
 - Rib binding, torso back plate interference, knee interaction, etc.

ES-2 Development Program

Milestones

ES-2 Prototype

Upper neck load cell

Coated plates and flexible clavicles

New back plate and load cell

T12 load cell €

Needle bearing rib module guide system

Hip end stop buffers

Re-designed upper leg

• New positioning tools

Evaluation Program

- Co-ordinated by EEVC and NHTSA
 - Involves governments and industry
- Extensive testing in US, Europe,
 Canada, Japan and Australia
- EEVC objectives
 - Have the deficiencies of EUROSID-1 been solved?
 - Is biofidelity of EUROSID-1 maintained?
 - What is ES-2's usefulness as regulatory test device?

European Tests

TEST CONDITION

Biofidelity

Thorax - pendulum Thorax/abdomen/pelvis - Heidelberg sled Pelvis - pendulum

<u>Sensitivity/Repeatability</u>

Shoulder/thorax/abdomen/pelvis - pendulum

Certification

ES-2 procedures

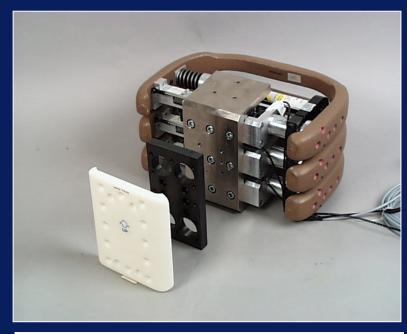
Full-Scale Performance

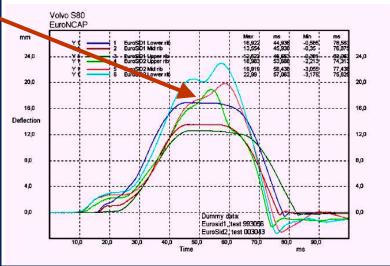
ECE R95 @ 50 km/h

EuroNCAP @ 50 km/h

FMVSS 214 @ 54.7 km/h

FMVSS 201 @ 32.2 km/h

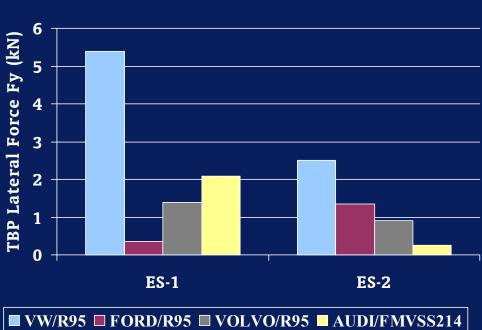




Main Results (1)

Rib Binding

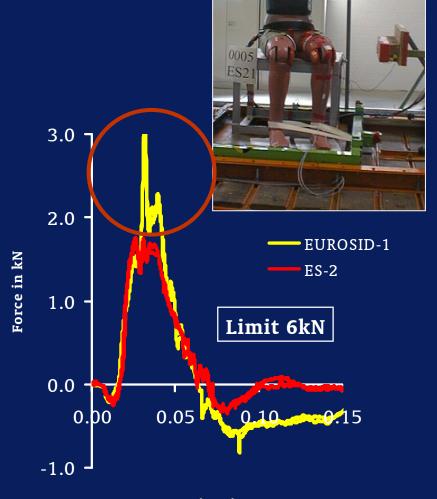
- Evaluated in 13 full scale tests
 - EU/US test conditions
 - 9 vehicle models
- Flat top disappeared
- Higher deflections and V*C for ES-2
 - Increased sensitivity to load direction and on-set



Main Results (2)

Back Plate Loads

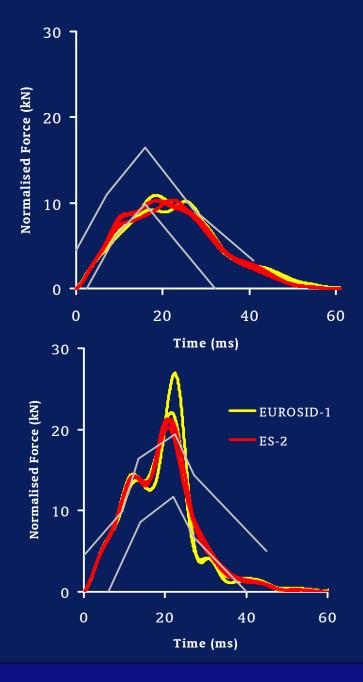
- Loads can now be measured
- Comparative study on EU vehicles
- Average decrease of 59% in lateral force in ECE test conditions



Main Results (3)

Knee Interaction

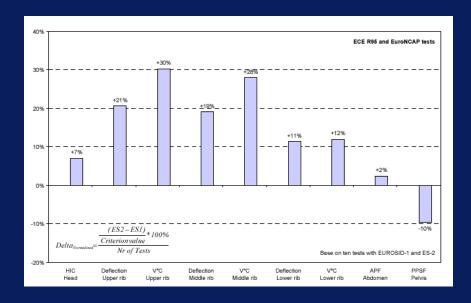
- Evaluated in full-scale and impactor-sled tests
- Peak in pelvic symphysis load significantly reduced for ES-2



Main Results (4)

Biofidelity

- Focus on modified parts
 - Thorax
 - Pelvis/upper legs
- EEVC (WG9) requirements
 - 23.4 kg mass pendulum
 - Heidelberg padded/rigid wall sled
- Equal biofidelity as EUROSID-1 found for ES-2
 - No assessment of V*C



Main Results (5)

Criteria

- Generally higher values
 - Rib deflections and V*C
 - Elimination of rib binding,
 reduction of back plate
 interference and higher
 sensitivity of new ribs
- Little effect on pass/fail with respect to regulatory limits
 - Based 11 vehicle models

Normalised Differences (%)	
Rib deflection	+ 17
Rib V*C	+ 23
Pelvis Pubic load	-10%

Conclusions

- The most important deficiencies of the EUROSID-1 have been addressed with ES-2
- ES-2 is superior to EUROSID-1 in terms of injury assessment capabilities, durability and handling
- The biofidelity of ES-2 has not significantly changed compared to EUROSID-1
- Reduced friction in the rib modules, reduced back plate grabbing and higher rib sensitivity lead to higher values for critical thorax parameters

Recommendations

- EEVC recommends to replace EUROSID-1 by ES-2 dummy
- EEVC recommends to measure back plate loads in full vehicle assessment
- EEVC endorses the ES-2 dummy as candidate for interim harmonisation

Reference

• ES-2 document is downloadable from the EEVC web site: www.eevc.org

