This informal document is submitted by the Informal Working Group (IWG) Particle Measurement Programme to inform and update the GRPE of the work of the IWG on the amendment of UN GTR 15 Annexes 5, 6 and 7 to:

- Modify the existing solid PN measurement methodology having a 50% cut-off size at 23 nm (SPN23) in order to allow the use of catalyzed evaporation device in volatile particle remover (VPR) and introduce minor improvements
- Include as a second alternative option a solid PN measurement methodology with a 65% cut-off size at 10 nm (SPN10).

This is an explanatory note accompanying the consolidated document addressing the changes to the current methodology and the proposed changes for the second alternative option to extend the particle size detection range to 10 nm particles (GRPE-81-10).

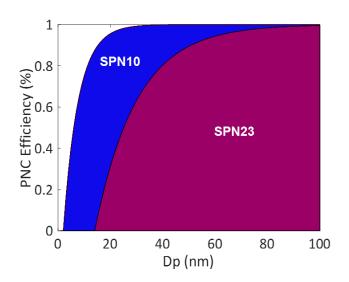
Purpose and summary of the modifications

This proposed amendment to GTR 15 aims mainly at introducing as an alternative option a solid particle number measurement procedure with a cut-off size of approximately 10 nm (SPN10) differing in this from the existing procedure which has a 50% cut-off size at 23 nm (SPN23).

This amendment stems from the evidence that specific technologies like PFI and CNG engines may exhibit, in some cases, particle emissions close to the existing emission limit and at the same time a significantly high fraction of sub-23 nm particles. In view of a possible extension of the particle number limit to all combustion engines, the European Commission and other Contracting Parties had expressed the interest in a test procedure with a lower cut-off size in order to improve the control of particle emissions whatever the average size of the particles emitted. The PMP IWG concluded that it would be extremely challenging to develop a reliable particle counting methodology with a d50 below 10 nm while a 65% cut-off size at 10 nm would be achievable by properly adapting the existing methodology.

For this reason the PMP IWG has worked to identify the necessary changes which would allow an increase to the size range of the particles counted, whilst maintaining an appropriate level of repeatability/reproducibility, and at the same time trying to reduce as much as possible the impact on the testing burden and the measuring equipment required. The new proposed procedure has been assessed by means of an inter-laboratory exercise that has involved several laboratories located in Europe and Asia. This exercise has shown that the variability level of SPN10 results is at the same level as the SPN23 values.

Since a few Contracting Parties have asked to maintain the existing methodology with the 50% cut-off size at 23 nm in the GTR15, in agreement with the GRPE Secretariat, it is proposed to keep the existing methodology with some modifications and introduce the new procedure with the cut-off size at about 10 nm as an additional option. Both the changes to the existing methodology and the changes to extend the particle size detection range to 10 nm are summarized and explained in the table 1.


One of the more debated points in the PMP IWG concerned the volatile particle remover and more specifically whether for SPN10 this should be based on a catalytic stripper or whether also the usual evaporation tube should be allowed. The results of the validation exercise have not provided clear evidence that one solution is definitely better than the other, but there is large consensus among the experts that the catalytic stripper minimizes the risk of artefacts due to too low dilution ratios. Moreover, losses are more critical for particles below 23 nm and if not properly measured and modelled, allowing both systems could result in an increased variability among instruments based on different sample treatment approaches. For these reasons it has been decided to allow only the use of the catalytic stripper for SPN 10. However, in order to maintain the possibility of using sampling systems designed for SPN10 also for SPN23 measurement, the IWG proposes to modify also the existing procedure by removing the restriction that the sampling system parts shall not react with the exhaust gas components. In this way a sampling system with a catalytic stripper fitted with a condensation particle counter with the proper calibration can be used for the SPN23 measurement. As supported by several experimental data, the different losses between catalytic stripper and evaporation tube become important only below 23 nm and therefore, allowing the use of both devices for SPN23, should not result in an increased variability of the measurements.

Subject	GTR 15, Annex	Proposed	Proposed	Reasoning
	5 – Original requirements	changes for SPN23	changes for SPN10	
PNC efficiency	50±12 % @ 23 nm, >90% @ 41nm	None	65±15 % @ 10 nm, >90% @ 15nm	Typical PNC- efficiency, well tested in the field.
Maximum VPR- loss requirement	@ 30nm 30% and @ 50 nm 20% higher than @ 100 nm	None	Addition @15 nm 100 % higher than at 100 nm	No additional requirement below 15 nm since generation of particles < 15 nm challenging, uncertainties high
Polydisperse validation of VPR	a polydisperse 50 nm aerosol may be used for validation	None	Removed	Uncertainties @ 15 nm or below high → test serves no purpose
VPR validation	> 99.0 % vaporization of 30 nm tetracontane particles, with an inlet concentration of $\geq 10,000$ per cm ³ (Monodisperse)	None	> 99.9 % removal efficiency of tetracontane particles with count median diameter > 50 nm and mass > 1 mg/m3. (Polydisperse)	Secure the functioning of VPR also for PNC with 65±15 % @ 10 nm, >90% @ 15nm
Volatile Particle Remover (VPR)	All parts (of SPN- system) shall not react with exhaust gas components	VPR may be catalyzed (both heated evaporation tube and catalytic stripper allowed)	- the VPR shall be catalyzed (use of catalytic stripper only)	Minimize the risk of artefacts for SPN10. Comparability of PNC10 and PNC23 and possibility of using new sampling systems with CS also for SPN23 by fitting a PNC with a D50 @ 23 nm.

Table 1: Main changes to SPN23 and changes/additions for SPN10

A specific technical issue stemmed from the concern that to certify a vehicle for two different regions applying different PN limits (i.e. PN10 and PN23) either two different instruments or double testing might be required. This would lead in any case to increased testing costs and burden. Both those situations might be avoided if a test performed using the SPN 10 measurement procedure could also cover the SPN23 nm test.

In principle measuring SPN10 should result in higher PN values and therefore if the PN23 limit is met it can be concluded that the same limit would be more easily met when using the SPN23 procedure (see picture below). The PMP IWG believes that this option is acceptable if any party would like to implement it.

As explained above, the proposed amendment does not just contain a second option for SPN10 measurement, but also includes a number of corrections/improvements to the existing and the proposed methodology. The following table describes in detail <u>only the changes to the existing, SPN23</u> <u>methodology</u>. When in the "New text" column the marking "SPN23" does not appear, the changes also apply to the SPN10 procedure.

Annex 5	Original text	New text	Justification
4.3. PN	None	This regulation allows for two	The text explains how to
measurement		optional settings for the	read the annex in the
equipment (if		measurement of PN, differentiated	context of having common
applicable)		by the particle electrical mobility	text, SPN10 specific text
		diameter at which the PNC's	and SP23 specific text- as
		detection efficiency is stated. The	introduced by the new and
		two values included are 23 nm and	the amended test
		10 nm.	procedure.
		While most of the paragraphs and	
		sub-paragraphs are common to the	
		two different settings and have to	
		be applied for both 23 nm and	
		10 nm PN measurement, some	
		contain two different options	
		starting respectively with the	
		markings "SPN23" and "SPN10".	
		Where such options exist, a	
		Contracting Party wishing to apply	7
		the 23 nm value should select the	

Annex 5	Original text	New text	Justification
		requirements starting with the	
		marking "SPN23" whereas a	
		Contracting Party wishing to apply	
		the 10 nm value should select the	
		requirements starting with the	
		marking "SPN10".	
4.3.1.2.3.	All parts of the dilution system	All parts of the dilution system and	This change allows the use
	and the sampling system from	the sampling system from the	of a catalytic stripper in the
	the exhaust pipe up to the PNC,	exhaust pipe up to the PNC, which	sampling system used for
	which are in contact with raw	are in contact with raw and diluted	SPN23 measurement
	and diluted exhaust gas, shall be	exhaust gas, shall be made of	
	designed to minimize deposition	electrically conductive materials,	
	of the particles. All parts shall be		
	made of electrically conductive	prevent electrostatic effects and	
	materials that do not react with	designed to minimize deposition of	
	exhaust gas components, and	the particles.	
	shall be electrically grounded to	*	
	prevent electrostatic effects.		
4.3.1.3.3.	The sample preconditioning unit	The sample preconditioning unit	
	shall:		Permits the use of
	(a) Be capable of diluting	(a) Be capable of diluting the	systems that can control
	the sample in one or more stages		the inlet temperature
	to achieve a particle number	achieve a particle number	-
	concentration below the upper	concentration below the upper	
	threshold of the single particle	threshold of the single particle	
	count mode of the PNC and a	count mode of the PNC;	
	gas temperature below 35 °C at	(b) Have a gas temperature at	
	the inlet to the PNC;	the inlet to the PNC below the	
		maximum allowed inlet	
		temperature specified by the PNC	
		manufacturer;	
4.3.1.3.3.	The sample preconditioning unit	The sample preconditioning unit	Only editorial change
	shall:	shall:	
	(e) Be designed to achieve a	(f) Achieve a solid particle	
	solid particle penetration	penetration efficiency of at least	
	efficiency of at least 70 per cent	70 per cent for particles of 100 nm	
	for particles of 100 nm electrical	electrical mobility diameter;	
	mobility diameter;		
4.3.1.3.3.	The sample preconditioning unit	The sample preconditioning unit	Only editorial change
	shall:	shall:	
	(h) Also achieve more than	(h) SPN23:	
	99.0 per cent vaporization of 30	Achieve more than 99.0 per cent	
	nm tetracontane	vaporization of 30 nm tetracontane	
	(CH3(CH2)38CH3) particles,	(CH3(CH2)38CH3) particles, with	
	with an inlet concentration of \geq	an inlet concentration of $\geq 10,000$	
	10,000 per cm ³ , by means of	per cm ³ , by means of heating and	
	heating and reduction of partial	reduction of partial pressures of	
	pressures of the tetracontane.	the tetracontane.	
New 4.3.1.3.3.1	None	The solid particle penetration	Definition of penetration.
		$P_r(d_i)$ at a particle size, d_i , shall be	_
		calculated using the following	
		equation:	

Annex 5	Original text	New text	Justification
		$P_r(d_i) = DF \cdot N_{out}(d_i) / N_{in}(d_i)$	
		Where	
		$N_{in}(d_i)$ is the upstream	
		particle number concentration for	
		particles of diameter d _i ;	
		$N_{out}(d_i)$ is the downstream	
		particle number concentration for	
		particles of diameter d _i ;	
		d _i is the particle electrical	
		mobility diameter	
		DF is the dilution factor	
		between measurement positions of	
		$N_{in}(d_i)$ and $N_{out}(d_i)$ determined	
		either with trace gases, or flow	
		measurements.	
4.3.1.3.4.	The PNC shall:	The PNC shall:	Clarification of the
	(d) Have a linear response to		already existing
	particle number concentrations	counting mode only and have a	requirement of single
	over the full measurement range	linear response to particle number	counting mode
	in single particle count mode;	concentrations within the	
		instrument's specified	
		measurement range;	
4.3.1.3.4.	The PNC shall:	The PNC shall:	The coincidence
	(g) Incorporate a	(g) Introduce a correction with	
	coincidence correction function	an internal calibration factor as	New counters have
	up to a maximum 10 per cent	determined in paragraph 5.7.1.3.	more sophisticated
	correction, and may make use of		algorithms
	an internal calibration factor as		
	determined in paragraph 5.7.1.3.		
	of this annex but shall not make		
	use of any other algorithm to		
	correct for or define the counting	5	
	efficiency;		
4.3.1.3.4.	None	The PNC shall:	Clarification that the
		(i) SPN23: The PNC	calibration factor has to
		calibration factor from the linearity	
		calibration against a traceable	checking the efficiencies
		reference shall be applied to	at the cut-off curve sizes
		determine PNC counting	
		efficiency. The counting efficiency	r
		shall be reported including the	
		calibration factor from the linearity	7
		calibration against a traceable	
4 2 1 2 4		reference.	Te confirme (1. (DNIC)
4.3.1.3.4.	None	The PNC shall:	To confirm that PNC
		(j) If the PNC applies some	working fluid does not
		other working liquid besides n-	behave differently with
			soot particles, i.e. soot is
		the counting efficiency of the PNC	
		shall be demonstrated with 4cSt	and PNCs applying

Annex 5	Original text	New text	Justification
		polyalphaolefin and soot-like particles.	water as working fluid should be avoided
Table A5/2a PNC counting efficiency	23±1 41±1	23 41	Reference to "nominal" particle size
4.3.1.3.6.	Where not held at a known constant level at the point at which PNC flow rate is controlled, the pressure and/or temperature at the PNC inlet shall be measured for the purposes of correcting particle number concentration measurements to standard conditions	Where not held at a known constant level at the point at which PNC flow rate is controlled, the pressure and/or temperature at the PNC inlet shall be measured for the purposes of correcting particle number concentration measurements to standard conditions. The standard conditions are 101.325 kPa pressure and 0°C temperature.	Standard conditions defined to avoid ambiguity.
4.3.1.4.1.3.	The sampling probe or sampling point for the test gas flow shall be arranged within the dilution tunnel so that a representative sample gas flow is taken from a homogeneous diluent/exhaust mixture.		Change on indexing
New 4.3.1.4.1.3	None	SPN23: The evaporation tube, ET, may be catalytically active.	Clarification that catalytically active evaporation tube is permitted
5.7.1.1.	changed every 6. See Figures A5/16 and A5/17. PNC counting efficiency may be monitored against a reference PNC or against at least two other measurement PNCs. If the PNC reports particle number concentrations within ± 10 per cent of the arithmetic average of the concentrations from the	The responsible authority shall ensure the existence of a calibration certificate for the PNC demonstrating compliance with a traceable standard within a 13- month period prior to the emissions test. Between calibrations either the counting efficiency of the PNC shall be monitored for deterioration or the PNC wick shall be routinely changed every 6 months if recommended by the instrument manufacturer . See Figures A5/16 and A5/17. PNC counting efficiency may be monitored against a reference PNC or against at least two other measurement PNCs. If the PNC reports particle number concentrations within ±10 per cent of the arithmetic average of the concentrations from the	

Annex 5	Original text	New text	Justification
	two or more PNCs, the PNC	reference PNC, or a group of two	
	shall subsequently be considered		
		subsequently be considered stable,	
		otherwise maintenance of the PNC	
	PNC is monitored against two or		
	-	monitored against two or more	
		other measurement PNCs, it is	
	vehicle running sequentially in	permitted to use a reference	
	different test cells	vehicle running sequentially in	
		different test cells	
5.7.1.3	Calibration shall be traceable to	Calibration shall be undertaken	Requirement that PNC
	a national or international	according to ISO 27891:2015 and	calibration should
	standard calibration method by	traceable to a national or	follow the recently
	comparing the response of the	international standard by	released ISO 27891:2015.
		comparing the response of the	
	of:	PNC under calibration with that	
		of:	
5.7.1.3	(b) A second PNC that has	(b) SPN23:	Requirement that
	been directly calibrated by the	A second full flow PNC with	facilitates the PNC
	method described above.	counting efficiency above 90 per	calibration with a reference
		cent for 23 nm equivalent	PNC different to that
		electrical mobility diameter	required in ISO
		particle s that has been calibrated	27891:2015.
		by the method described above.	27091.2013.
		The second PNC counting	
		efficiency shall be taken into	
		account in the calibration.	
5.7.1.3.1	For the requirements of	For the requirements of paragraphs	Paragaphs 5.7.1.3.1 and
	paragraph 5.7.1.3.(a), calibration		5.7.1.3.2 combined
	shall be undertaken using at least		together and clarified
	six standard concentrations	using at least six standard	0
	spaced as uniformly as possible	concentrations across the PNC's	
	across the PNC's measurement	measurement range.	
	range.	These standard concentrations	
	C	shall be as uniformly spaced as	
		possible between the standard	
		concentration of 2,000 particles	
		per cm ³ or below and the	
		maximum of the PNC's range in	
		single particle count mode.	
5.7.1.3.2	For the requirements of	Deleted	Paragaphs 5.7.1.3.1 and
	paragraph 5.7.1.3.(b), calibration		5.7.1.3.2 combined
	shall be undertaken using at least		together and clarified
	six standard concentrations		-
	across the PNC's measurement		
	range. At least 3 points shall be		
	at concentrations below 1,000		
	per cm ³ , the remaining		
	concentrations shall be linearly		
	spaced between 1,000 per cm ³		
	and the maximum of the PNC's		

Annex 5	Original text	New text	Justification
	range in single particle count		
	mode.		
Old 5.7.1.3.3	For the requirements of	For the requirements of paragraphs	Stricter requirement for the
becomes new	paragraphs 5.7.1.3.(a) and	5.7.1.3.(a) and 5.7.1.3.(b), the	linearity (instead of +/-
5.7.1.3.2	5.7.1.3.(b), the selected points	selected points shall include a	10%, reduced to +/-5%)
	shall include a nominal zero	nominal zero concentration point	from the slope.
	concentration point produced by	produced by attaching HEPA	Additionally, linearity is
		filters of at least Class H13 of EN	no more compared on
	Class H13 of EN 1822:2008, or	1822:2008, or equivalent	absolute, measured
	equivalent performance, to the	performance, to the inlet of each	reference concentrations,
	inlet of each instrument. With no	instrument. The gradient from a	but on forecasted reference
	calibration factor applied to the	linear least squares regression of	concentration.
	PNC under calibration,	the two data sets shall be	
	measured concentrations shall be	calculated and recorded. A	
	within ± 10 per cent of the	calibration factor equal to the	
	standard concentration for each	reciprocal of the gradient shall be	
	concentration, with the	applied to the PNC under	
	exception of the zero point,	calibration. Linearity of response	
	otherwise the PNC under	is calculated as the square of the	
	calibration shall be rejected. The	Pearson product moment	
	gradient from a linear least	correlation coefficient (r) of the	
	squares regression of the two	two data sets and shall be equal to	
	data sets shall be calculated and	or greater than 0.97. In calculating	
	recorded. A calibration factor	both the gradient and r2, the linear	
	equal to the reciprocal of the	regression shall be forced through	
	gradient shall be applied to the	the origin (zero concentration on	
	PNC under calibration. Linearity	both instruments). The calibration	
	of response is calculated as the	factor shall be between 0.9 and 1.1	
	square of the Pearson product	or otherwise the PNC shall be	
	moment correlation coefficient	rejected. Each concentration	
	(r) of the two data sets and shall	measured with the PNC under	
	be equal to or greater than 0.97.	calibration, shall be within ± 5 per	
	In calculating both the gradient	cent of the measured reference	
	and r2, the linear regression shal	concentrations multiplied with the	
	be forced through the origin	gradient, with the exception of the	
	(zero concentration on both	zero point, otherwise the PNC	
	instruments).	under calibration shall be rejected	
5.7.2.1.	Calibration of the VPR's particle	Calibration of the VPR's particle	"Primary calibration"
	concentration reduction factors	concentration reduction factors	replaced "with latest
	across its full range of dilution	across its full range of dilution	complete calibration".
	settings, at the instrument's fixed	settings, at the instrument's fixed	Primary is ambiguous and
	nominal operating temperatures,	nominal operating temperatures,	unrealistic if interpreted as
	shall be required when the unit is	shall be required when the unit is	the first calibration of the
	new and following any major	new and following any major	instrument.
	maintenance. The periodic	maintenance. The periodic	
	validation requirement for the	validation requirement for the	
	VPR's particle concentration	VPR's particle concentration	
	reduction factor is limited to a	reduction factor is limited to a	
	check at a single setting, typical	check at a single setting, typical of	
	of that used for measurement on	that used for measurement on	
	particulate filter-equipped	particulate filter-equipped	
	vehicles. The responsible	vehicles. The responsible authority	

Annex 5	Original text	New text	Justification
	authority shall ensure the	shall ensure the existence of a	
	existence of a calibration or	calibration or validation certificate	
	validation certificate for the	for the VPR within a 6-month	
	VPR within a 6-month period	period prior to the emissions test.	
	prior to the emissions test. If the	If the VPR incorporates	
	VPR incorporates temperature	temperature monitoring alarms, a	
	monitoring alarms, a 13-month	13-month validation interval is	
	validation interval is permitted.	permitted.	
	-	It is recommended that the VPR is	
	is calibrated and validated as a	calibrated and validated as a	
	complete unit.	complete unit.	
	The VPR shall be characterised	The VPR shall be characterised for	
	for particle concentration	particle concentration reduction	
	reduction factor with solid	factor with solid particles of 30, 50	
	particles of 30, 50 and 100 nm	and 100 nm electrical mobility	
	electrical mobility diameter.	diameter. Particle concentration	
	Particle concentration reduction	reduction factors fr (d) for particles	
	factors $f_r(d)$ for particles of 30	of 30 nm and 50 nm electrical	
	nm and 50 nm electrical mobility	mobility diameters shall be no	
	diameters shall be no more than	more than 30 per cent and 20 per	
	30 per cent and 20 per cent	cent higher respectively, and no	
	higher respectively, and no more		
	than 5 per cent lower than that	that for particles of 100 nm	
	for particles of 100 nm electrical	-	
	mobility diameter. For the	the purposes of validation, the	
	purposes of validation, the	arithmetic average of the particle	
	arithmetic average of the particle		
	concentration reduction factor	calculated for particles of 30 nm,	
	shall be within ± 10 per cent of	50 nm and 100 nm electrical	
	the arithmetic average particle	mobility diameters shall be within	
	concentration reduction factor $\overline{f_r}$	± 10 per cent of the arithmetic	
	determined during the primary	average particle concentration	
	calibration of the VPR.	reduction factor $\overline{f_r}$ determined	
		during the latest complete primary	
		calibration of the VPR.	
New 5.7.2.4	None	The instrument manufacturer must	Require the instrument
		provide the maintenance or	manufacturer to
		replacement interval that ensures	recommend the
		that the removal efficiency of the	maintenance interval to
		VPR does not drop below the	ensure proper functioning
		technical requirements. If such	of the VPR
		information is not provided, the	
		volatile removal efficiency has to	
		be checked yearly for each	
		instrument.	
New 5.7.2.5	None	The instrument manufacturer	Definition of penetration.
		shall prove the solid particle	It was not defined.
		penetration $P_r(d_i)$ by testing	
		one unit for each PN-system	
		model. A PN-system model	
		here covers all PN-systems	
		with the same hardware, i.e.	

Annex 5	Original text	New text	Justification
		same geometry, conduit	
		materials, flows and	
		temperature profiles in the	
		aerosol path. The solid particle	
		penetration $P_r(d_i)$ at a particle	
		size, d _i , shall be calculated using	
		the following equation:	
		$P_r(d_i) = DF \cdot N_{out}(d_i) / N_{in}(d_i)$	
		Where	
		$N_{in}(d_i)$ is the upstream	
		particle number concentration for	
		particles of diameter d _i ;	
		$N_{out}(d_i)$ is the downstream	
		particle number concentration for	
		particles of diameter d _i ;	
		d _i is the particle electrical	
		mobility diameter	
		DF is the dilution factor	
		between measurement positions of	
		$N_{in}(d_i)$ and $N_{out}(d_i)$ determined	
		either with trace gases, or flow	
		measurements.	
5.7.3. PN	On a monthly basis, the flow	On a monthly basis, the flow into	Clarification of what
measurement	into the PNC shall have a		nominal flow rate means.
system check	_	value within 5 per cent of the PNC	
procedures	of the PNC nominal flow rate	nominal flow rate when checked	
	when checked with a calibrated	with a calibrated flow meter. Here	
	flow meter.	the term 'nominal flow rate' refers	
		to the flow rate stated in the most	
		recent calibration for the PNC by	
A		the instrument manufacturer.	
Annex 6			TT 100 (1 / 2
2.11.1.2.2.	Each day, a zero check on the	Each day, a zero check on the	The 100 particles/cm3 was
	PNC, using a filter of	, 8 11 1	removed because it was a
	appropriate performance at the PNC inlet, shall report a	performance at the PNC inlet, shall report a concentration of < 0.2	not confirm the proper
	concentration of ≤ 0.2 particles	report a concentration of ≤ 0.2 particles per cm ³ . Upon removal of	
	-		sometime too restrictive
	per cm ³ . Upon removal of the filter, the PNC shall show an	increase in measured concentration	
	increase in measured		backgrounds
	concentration to at least 100	cm^3 on replacement of the filter.	backgrounds
	particles per cm ³ when sampling	-	
	ambient air and a return to ≤ 0.2	error.	
	particles per cm ³ on replacement		
	of the filter.		
Annex 7			
4. Determination	C _b is either the dilution air	C _b is either the dilution air or	Coincidence correction
of PN (if	or the dilution tunnel		eliminated
applicable)	background particle number	particle number	
11	concentration, as permitted by	concentration, as permitted by the	
	the responsible authority, in	responsible authority, in particles	

Annex 5	Original text	New text	Justification
	particles per cubic centimetre,	per cubic centimetre, corrected to	
	corrected for coincidence and to	standard conditions (273.15 K (0	
	standard conditions (273.15 K (0	°C) and 101.325 kPa);	
	°C) and 101.325 kPa);		
	C _i is a discrete	C _i is a discrete measurement	Coincidence correction
	measurement of particle number	of particle number concentration in	eliminated
	concentration in the diluted gas	the diluted gas exhaust from the	
	exhaust from the PNC; particles	PNC; particles per cm ³ ;	
	per cm ³ and corrected for		
	coincidence;		