

Intelligent Transport System for Innovative Intermodal Freight Transport

Experience from the TelliSys Project and current ITS Projects

60th Working Party on Intermodal Transport and Logistics Geneva, Switzerland, 23 November 2017

Alexia Fenollar Solvay Research Group Leader Mobility and Logistics Cybernetics Lab IMA/ZLW & IfU Faculty of Mechanical Engineering RWTH Aachen University

Cybernetics Lab Aachen **Organigram**

Cybernetics Lab Aachen **Research Areas**

Cybernetics Lab Aachen Partners from Industry, Research and Development

A. Fenollar Solvay | IMA of the RWTH Aachen University UNECE 60th Working Party on Intermodal Transport and Logistcis Geneva | 24 November 2017

Cybernetics Lab Aachen Partners from Industry, Research and Development

A. Fenollar Solvay | IMA of the RWTH Aachen University UNECE 60th Working Party on Intermodal Transport and Logistcis Geneva | 24 November 2017

Information Management in Mechanical Engineering Information Management Cycle

"Information is the oil of the 21st century, and analytics is the combustion

engine" - Peter Sondergaard, senior vice president at Gartner

Information Management in Mechanical Engineering From Data To Decisions

"At the end of the day, it's not about how much data you have, it's about how well you use it." - Tjeerd Brenninkmeijer, CMSWire, 2013

"Data about data, or metadata, is growing twice as fast as the digital universe as a whole" - Gantz and Reinsel 2011

A. Fenollar Solvay | IMA of the RWTH Aachen University UNECE 60th Working Party on Intermodal Transport and Logistcis Geneva | 24 November 2017

Information Management in Mechanical Engineering From Data To Decisions

"Challenges occur along the multiple distinct phases of the analysis of Big Data" [Agrawal et al. 2012]

Challenges that underlie many of these phases

Scale	Heterogeneity	Timeliness	Privacy	Human Collaboration
-------	---------------	------------	---------	------------------------

Content

- I. Short Presentation
- II. TelliSys Project
- III. Trends and Conclusions

Intelligent Transport System for Innovative Intermodal Freight Transport

- Collaborative project funded by the 7th Framework Programme of the European Commission
- Project Start: 1st of December 2012
- Project Duration: 3 years
- Total project budget: 4.287.231 € (funded)
- Follow-up Project of Intelligent MegaSwapBoxes for advanced Intermodal Transport (TelliBox)

TelliSys Project From TelliBox to TelliSys

Project aim TelliBox:

Combining the advantages of existing loading units in one MegaSwapBox

Project aim TelliSys:

13

Development of an intelligent intermodal freight transport system

TelliSys Project Consortium and Advisory Board

14 A. Fenollar Solvay | IMA of the RWTH Aachen University UNECE 60th Working Party on Intermodal Transport and Logistcis Geneva | 24 November 2017

Objectives:

- Development of a complete volume optimized intermodal combination satisfying current market demands
- Enhance the performance of intermodal logistic chains and contribute to a more efficient transport by easing the transition between different transport modes

Innovation highlights of TelliSys:

- Product-family of MegaSwapBoxes for different use cases
- Next level Super Low-Deck tractor unit with 850 mm fifth wheel height
- Low profile tyres enabling the significant lower truck chassis height
- Lightweight **Trailer Chassis** to carry the MSBs
- Up to 100 m³ cargo volume while keeping the total system at 4 m height on the road

TelliSys Project Concept Requirements

- A total of 21 interviews with companies from manufacturer, transport and logistic sector have been performed, including terminal operators and port authorities.
- Desired characteristics of an intermodal loading unit:

SHARING THOUGHTS: HOW TO REDUCE CO₂ BY MAXIMIZING INTERNAL LOADING VOLUME WITHIN OUR CURRENT (INTERMODAL) TRANSPORT SYSTEM

TelliSys Project Challenge - Maximum Volume Transport Concept

Characteristics	Contine	Interceptinental MSP		
Characteristics	Stackable MSB Automotive Box			
Size	40 ft / 45 ft	45 ft	40 ft / 45 ft	
Height (internal) 2940 mm		2970 mm	2970 mm	
Width (internal)	Euro-pallet	Euro-pallet	Euro-pallet	
Long sides	One open	Two open	Closed	
Pay load	Min. 24t	Min. 24t	Min. 24t	
Roof	Hinged	Hinged	Hinged	
Handling Corner castings		Corner castings Grappler pockets	Corner castings Grappler pockets	
Stackability	2 times (1+1)	Stackable (empty)	3 times (2+1)	

Continental MSB

Features:

- Internal height of 2940 mm
- EU Pallet wide
- Liftable Roof
- One openable long side

Automotive MSB

Features:

- Internal height of 2970 mm
- 3 metre trays stackable
- Liftable Roof
- Two openable long sides

TelliSys Project Prototype Vehicle

Main specifications Super Low Deck

- Vehicle type 6x2, Euro VI
- Wheelbase 3.300 mm
- Fifth wheel 850 mm
- Axle front 8.0t, air
- Axle rear 11.5t, air, sr13.44

44t

- Tag axle 4.0t, air
- GCW
- Vehicle weight target 8.000 kg

TelliSys Project Performance Evaluation

Real intermodal scenario from PL to GB for:

- Economic evaluation
- Life cycle assessment

©Madeleine Malcher – IMA/ZLW & IfU

Comparing TelliSys with Mega-trailer for the reference scenario

- •Up to 25% reduced CO₂ emission
- •Up to 15% cost savings

TelliSys Project Performance Evaluation

Global Warming Potential

The superior volume and efficient use of intermodal transport systems let TelliSys outperform the leading transport solution.

TelliSys Project Stakeholder Roadshow

A. Fenollar Solvay | IMA of the RWTH Aachen University UNECE 60th Working Party on Intermodal Transport and Logistcis Geneva | 24 November 2017

TelliSys Project Learnings

- TelliSys is able to serve market demands, but infrastructure has to develop along the chain of combined transport in equal dimensions → Currently just 10% out of 100 terminals in Europe are able to handle all members of the TelliSys – family*.
- Benefits:
 - Maximised transport volume
 - Good system behaviour
 - Flexibility during loading and unloading processes
 - Suitable for combined transport (Point - Point Traffic)

The market reactions were very positive and promising. "If we manage to eliminate the described restrictions, there are good chances for a successful market launch." – H. Herz, Resp. Intermodal Transport by GEFCO

* According research by TelliSys

TelliSys Project Summary

- Complete volume optimized intermodal combination
- Family of new intermodal loading units addressing different use cases
- More environmentally friendly and costs efficient.
- Open new market possibilities for the intermodal transport

Content

- I. Short Presentation
- II. TelliSys Project
- III. Trends and Conclusions

Network

- Vertical and horizontal supply chain collaboration on a full connected network
- New services and business models

4.0 Design principles

Decentralized decisions

- Artificial Intelligent
- Learning Systems
- Multi-agent Systems

Information transparency

- Continuous information flow
- Virtually
- Context sensitivity
- Big Data analysis

Technical assistance

- Decision support systems
- (Partial-)autonomous systems

Trends From Industry 4.0 to Logistics 4.0

Definition of logistics 4.0 along two different time scales:

- **1. Short-term**: data-driven, highly networked processes between heterogeneous players (optimization, efficiency, transparency of processes, ...)
- 2. Medium-term: autonomous systems and self-organization of systems of systems

Trends Logistics 4.0 main competences and actions fields

32 A. Fenollar Solvay | IMA of the RWTH Aachen University UNECE 60th Working Party on Intermodal Transport and Logistcis Geneva | 24 November 2017

Conclusions

The impact of IoT and Big Data on the ITS:

- Logistics and transport are going to change on all levels in the context of a 4th industrial revolution:
 - Interconnection of everything with everything in real-time
 - Context and user sensitive system using semantic technologies
 - Distributed artificial intelligent systems of systems
 - Automated systems
- In addition to the development and adoption of new technologies, organizational and social change are the key challenges in a rapidly changing market:
 - New, data driven services and business models
 - Formation of new cross-company networks
 - Emergence of new stakeholders

Thank you very much for your attention

Alexia Fenollar Solvay, Ing. Industrial Research Group Leader Mobility and Logistics Phone: +49 241 / 80 91141 Mail: alexia.fenollar@ima-zlw-ifu.rwth-aachen.de

Prof. Dr.-Ing. Tobias Meisen Managing Director "Institute for Information Management in Mechanical Engineering" Phone: +49 241 / 80 91130 Mail: tobias.meisen@ima-zlw-ifu.rwth-aachen.de

