

73rd UNECE GRPE session

PMP IWG Progress Report

Joint Research Centre

the European Commission's in-house science service

JRC Science Hub: ec.europa.eu/jrc

PMP meetings in 2016

13th January 2016 (Geneva): 38th PMP meeting

9th-10th March 2016 (Brussels): 39th PMP meeting

27th April – 3rd May (Web/phone conference): 40th meeting

31st May (Web/phone conference)

Next f2f meeting: 12th -13th October 2016 (JRC-Ispra)

Current status

- The PMP IWG has been working since June 2013 (approval date of the existing ToR) on a number of issues related to both exhaust and non-exhaust particles (i.e. particles from brake and tyre/road wear)
- Main investigations :
 - Sub-23 nm exhaust particles: Nature, number, measurement feasibility
 - Non-exhaust particles: Literature survey and collection of information on test cycles, sampling/measurement methodologies, on-going projects
- All the information collected are available on the UNECE website / PMP webpage

Key messages

- Sub-23 nm exhaust particles:
 - There are particles <23nm Sometimes they are an artifact
 - Particle not counted with the current PMP method: GDIs 30-40%, motorcycles (2-s engines)up to >200%, PFIs 50-100%, DPFs 5%.
 - High emitters are still detected by PMP23nm Thus not critical yet for current engine technologies to which the PN limit is applicable
 - Measuring particles down to 10 nm appears possible with "limited" changes to the existing methodology
- Brake wear particles:
 - Industry is very active in researching/developing low emission brake systems – Consensus on the usefulness of a common measurement procedure
- Particles from tyre/road wear:
 - Ultrafine particles generated only under extreme conditions Many questions still open. Distinguishing the different sources (tyres/road/material deposition the road) is a challenge

New mandate / ToR

- The PMP groups has submitted to GRPE an updated draft version of the ToR and request a new mandate with two new specific concrete objectives:
- Sub 23 nm exhaust particles:
 - Demonstrate the feasibility to measure sub23nm particles with the existing PMP methodology with appropriate modifications and assess measurement differences/uncertainties by means of a round robin
- Brake wear particles:
 - Development of a suggested common test procedure for sampling and assessing brake wear particles both in terms of mass and number:

NON-EXHAUST PARTICLE EMISSIONS

Steps for Building a Common Method for Measuring Brake Wear Particles

Development of a suggested common method for BW particle investigation – Steps

- Adoption/Development of an appropriate Braking Test
 Cycle
- Selection of the most suitable methodology for BW Particles Sampling
- Selection of the most suitable methodology for BW
 Particles Measurement and Characterization

Step 1 - Adoption/development of a braking test cycle

- ✓ WLTP Database Analysis (Concluded)
- ✓ Comparison of WLTP data with Existing Industrial Cycles (Deadline: January 2017)
- ✓ Development of a first version of a New Braking Cycle if necessary (Definition of the nature of the cycle urban or mixed duration of the cycle, number of repetitions required, preconditioning, etc.) (Deadline: June 2017)
- ✓ Testing and Validation of the New Cycle Possible round robin (Repeatability assessment of the test cycle and reproducibility assessment on other dynos) (Deadline: To be defined depending on the progress)

Step 2 - Selection of the most suitable sampling method

- ✓ Selection of Functional Parameters (i.e. Temperature Tolerance, Inertial Load, Speed Variation, etc.) (Deadline: June 2017)
- ✓ Comparison of existing systems/test rig configurations (i.e. open vs. closed, sampling box vs. hose) (Deadline: June 2017)
- ✓ Selection of Sampling Parameters (i.e. Temperature, RH, Load, direction of cooling air, sub-23 nm particles, etc.)
- ✓ Testing and Validation of the Selected Configuration (Repeatability and reproducibility assessment) (Deadline: To be defined depending on the progress)

STEP 3 - Selection of the most suitable methodology for BW Particles Measurement and Characterization

- ✓ Comparison of Existing Methodologies (Deadline: January 2017)
- ✓ Selection/decision on the parameters/metrics to be considered (i.e. both mass and number)
- ✓ Selection of the most suitable methodologies based on the selected sampling configuration (Deadline: To be defined depending on the progress)
- ✓ Testing, Validation and Accuracy Study of the Selected Methodologies (Deadline: To be defined depending on the progress)
- ✓ Data processing method (Deadline: To be defined)

EXHAUST PARTICLE EMISSIONS

Objectives of a Round Robin with CS

- ✓ Demonstrate feasibility to measure sub23nm
- ✓ Examine the need of a catalytic stripper (CS)
- ✓ Confirm the draft requirements and calibration procedures of sub23nm protocol - Recommend a technology-independent, traceable calibration standard (including transfer system, VPR/CS/..., measuring device), if measurement technology has to be adapted.
- ✓ Evaluate measurement differences/uncertainties
- ✓ Evaluate sub23nm fraction of modern engines
- ✓ Details and time frame to be discussed and agreed in the next f2f meeting

PN system sub23nm (VPR)

Catalytic Stripper included

VRE test to be defined (during RR and if CS necessary) Propane oxidation efficiency and monitoring

Calibration: Thermally stable particles >5000 p/cm3 (15 nm!)

PCRF(15nm)/PCRF(100nm)<2

Desired also lower values: Input from instr. manufacturers

PCRF = average (30nm, 50nm, 100nm)

It has to be understood and agreed that around 40% of sub23nm particles are not counted (i.e. a correction would be needed but the needed info will not be available in future systems as only one PNC will be counting) - Limit of detection on the low-end side and "peak-concentrations" on the high-end side must be also considered.

PN system 10nm (PNC)

Counting efficiency 10nm: = $50\% \pm 12\%$ To maximize the measurement of >10 nm particles Values to be defined also based on existing PNCs

Counting efficiency 15nm: >90%

Calibration: Emery oil or other equivalent Input from CPC calibration round robin

Investigation of sub23nm protocol

- ✓ One system with CS and 10nm CPC to circulate
- ✓ Each lab PMP system plus a 10nm CPC (to circulate?)
- ✓ One golden vehicle
- Different labs will test different engine technologies

Stay in touch

JRC Science Hub: ec.europa.eu/jrc

Twitter and Facebook:

@EU_ScienceHub

LinkedIn:

european-commission-joint-research-centre

