Informal document **GRRF-79-30** (79th GRRF, 16 – 20 February 2015, agenda item 6)

Proposal to introduce requirements for the approval of replacement brake discs for L-category vehicles in UN Regulation No. 90

79° GRRF 16 February 2015

Preamble

At the 78° session of GRRF held on 16 Sept 2014, ITALY had tabled a proposal (doc ECE/TRANS/WP.29/GRRF/2014/23)

It was aimed at including in UN-R 90 a set of new requirements for the approval of replacement brake discs for L-category vehicles, taking into consideration the latest technologies available in the market.

GRRF agreed to ask ITALY to revise the proposal and submit at 79° GRRF session, taking into account all the comments received.

To this extent, ITALY has forwarded the following documents for today's discussion:

- Working document ECE/TRANS/WP.29/GRRF/2014/23/Rev.1
- Informal document GRRF-79-11e
- Informal document GRRF-79-13e

Comment raised during 78° GRRF:

Need to exclude L6 and L7 categories.

Revision:

We have included reference to L_1 , L_2 , L_3 , L_4 , L_5 throughout the document, excluding L_6 and L_7

Comment raised during 78° GRRF:

Need to modify the definition of both "Original replacement brake discs for category L " (2.3.3.1.2) and "Identical brake discs for category L " (2.3.3.2.2), for competitive reasons.

Revision:

The original definitions are restored, same as for M, N and O categories.

Comment raised during 78° GRRF:

Paragraph 5.3.3.1.1., amend to read:

"5.3.3.1.1. For discs the following maximum values shall be met:

Italy proposal (1): the DTV is modified from 0,015 to 0,020 mm in order to consider the standard of production adopted at international level

	M_1, N_1, O_1, O_2	M ₂ , M ₃ , N ₂ , N ₃ , O ₃ , O ₄	L_1, L_2, L_3, L_4, L_5		
Thickness variation	0.015 mm	0.030 mm	0.020 mm		
Cheek thickness variation (for ventilated disc only)	1.5 mm	2.0 mm	<		Not applicable to L, since no application with vent discs exist
Lateral run-out friction surface	0.050 mm^*	0.150 mm^*	0.150 mm***		
Location bore variation	Н9	Н9	D10 or H11 ****	<	Both D10 and H11
"Top hat" parallelism	0.100 mm	0.100 mm	下		tolerances are widely adopted in OEM,
Location face flatness	0.050 mm	0.050 mm	0.100 mm		depending from
Friction surface roughness**	3.2 µm	3.2 µm	1.6 µm		production process

Why no values for L ??

n/a in the case of a floating disc.

Ra-value according to ISO 1302:2002.

0.100 mm for maximum straightness for "full floating" disc (without elastic constraints between bell and braking ring)

**** n/a for vehicles categories L1, L2, L3, L4, L5

****** Location bore variation where applicable, related to manufacturing process."

Not applicable to L, since the disk is always mounted externally on the wheel rim, and not interposed between the wheel hub and the rim

Comment raised during 78° GRRF:

May the definition of a list of stainless steel materials pose problem of design restriction?

Add a new paragraph 5.3.3.2.2., to read:

"5.3.3.2.2 Martensitic stainless steel for braking ring of categories L1, L2, L3, L4 and L5. In order to be considered "Equivalent" the replacement brake disc shall be from the same material subgroup as the original brake disc. Five original part material subgroups are defined.

	Test standard	Subgroup 1 JIS SUS 410	Subgroup 2 X 10 Cr 13 EN 10088/2	Subgroup 3 X 12 Cr 13 EN 10088/2	Subgroup 4 X 20 Cr 13 EN 10088/2	Subgroup 5X 30 Cr 13 EN 10088/2
Carbon Content (per cent)		0.02-0.10	0.08-0.12	0.08-0.15	0.16-0.25	0.26-0.35
Silicon Content (per cent)		Max 0.80	Max 1.00	Max 1.00	Max 1.00	Max 1.00
Manganese Content (per cent)		0.50-2.50	Max 1.00	Max 1.50	Max 1.50	Max 1.50
Chromium Content (per cent)		10.00-14.50	12.00-14.00	11.50-13.50	12.00-14.00	12.00-14.00
Iron Content (per cent)		rest				
Hardness HRC	ISO 6508-1:2005	30-40	30-40	30-40	30-40	30-40

We confirm that the list can be regarded as exhaustive of the materials used in production (Example: JIS SUS **420** is included in X20Cr13)

Italy proposal (2): HRC is changed from (32-38) to (30-40) in order to be adapted with the OEM standard and production process

Comment raised during 78° GRRF:

Table A14/2.2.5.

Need to define a better classification, not based on commercial definition

Application	Front disc	Rear disc
	Tangential force F	
	[kN] MIN	
Sport, Tourer and Road Enduro	14	12
Custom	10	15
Scooter	12	10
Off-road	12	7

Spessore disco

Tangential force F

Table A14/2.2.5.

Disc Diameter

				·· I · · · · · · · · · · · · · · · · · · ·	
			[mm]	[mm]	[kN] MIN
A new classification is			> 150 < 200	<u>≤</u> 4	≥8
proposed, based on disc			≥ 150 < 200	> 4	≥10
DIAMETER and		\longrightarrow		≤ 3	≥8
THICKNESS			\geq 200 < 250	>3 ≤ 4	≥10
				> 4	≥12
				≤3	≥8
Notes:	h		$\geq 250 < 300$	> 3 ≤ 4	≥10
- No groups defined for perip	onerical discs (> 350)			> 4	≥12
diameter < 3 50 mm	eu uiscs lidve all a			<u>≤</u> 4	≥8
- In current production , max	of 330 mm is reached		\geq 300 < 350	> 4 ≤ 5	≥11
				> 5	≥14

Italy proposal (3):

60

40

80

60

60

40

80

+ 6

-6

+6

- 8

- 6

+ 6

Steps 1 to 14 = 1 cycle; repeating 29 times the cycle for a total of 30 cycles

40

60

40

80

60

60

40

In Annex 14 (new), the thermal FATIGUE test has been modified for both front and rear discs.

5.1.3.	Front disc				
5131	Test prog	ramme			FRONT DISC
5121	1 Providela	-			
5.1.3.1.	1. Durnisnin	g			
	According	g Table A14/5.1.3	.1.1.		
Table /	A14/5.1.3.1.1.				
Burnish	ing				TUV Directive
Step	Initial speed	Final speed	Acceleration (+) an	d Step duration	1
	(km/h)	Gem/h1	deceleration (-)	(s)	
			6 4 4 2		
			(m/s ⁻)		
1	80	40	-3	3.7	
2	40	80	+ 3	3.7	
3	80	80	-	20	1
Steps 1	to 3 = 1 cycle: rep	eating 19 times the	cycle for a total of 20 cycle	1	1
	,,,				l
Table /	Accordin A14/5.1.3.1.2.	g Table A14/5.1.	3.1.2.		
Emerg	ency stop				
Step	Initial speed	Final speed	Acceleration (+) and	Step duration (b)	
	% of Vmax (a)	% of Vmax (a)	deceleration (-)	[5]	
1	80	5 (km/h)	_ 10	0.078 * Vmax	
2	5 (km/h)	80	+ 3	0.258 * Vmax	
3	80	80		240	
(a)	Vmax in km/h				_ /
(b) ¹	Vmax in m/s				
5.1.3.1.	3. Fatigue t	est			
	Assaudin	a Table A14/51	212		
	Accorum	g 1 able A14/5.1.			l l l l l l l l l l l l l l l l l l l
I able i	414/5.1.3.1.3.			TUV Directiv	<u>/e</u>
	Fatigue tes	st			
Step	Initial speed	Final speed	Acceleration (+) and	Step duration	
	% of Vmax (a)	% of Vmax (a)	deceleration (-)	(b)	
1	80	40	[mus ⁻]	0.05 * Vmax	
2	40	80	+ 6	0.067 * Vmax	\neg
3	80	20	- 8	0.075 * Vmax	
4	20	80	+ 6	0.1 * Vmax	
5	80	40	- 8	0.05 * Vmax	
6	40	60	+ 6	0.033 * Vmax	
7	60	40	-6	0.033 * Vmax	

0.033 * Vmax

0.033 * Vmax

0.067 * Vmax

0.025 * Vmax

0.033 * Vmax

0.067 * Vmax

10

5.1.3.	Front disc

5.1.3.1. Test programme

5.1.3.1.1. Burnishing

According Table A14/5.1.3.1.1.

Table A14/5.1.3.1.1.

OEM procedure: longer test for a better /pad/disc alignment

			Bur	nishing			
Step	Vehicle gross weight [kg]	Initial speed [km/h]	Final speed [km/h]	Deceleration [m/s²]	Starting temperature before the braking [°C]	Brakings quantity []	Rotation speed of the cooling fan [min ⁻¹]
1	75%	80	30	4	100	60	3,000

5.1.3.1.2. Fatigue test

According Table A14/5.1.3.1.2.

Table A14/5.1.3.1.2.

			Th	ermal fatigue te	st			
Step	Vehicle gross weight [kg]	Initial speed [km/h]	Final speed [km/h]	Deceleration [m/s ²]	Starting temperature before the brakings [°C]	Time between 2 following brakings [s]	Brakings quantity []	Rotation speed of the cooling fan [min ⁻¹]
l thermal	75% / discs q.ty	50% Vmax	5	7	100 (a)	30	5	2,000
2 functional	75% / discs q.ty	80% Vmax	5	8	200		1	3,000
3 mechanic	100% / discs q.ty	60% Vmax	5	10	200		2	3,000
	Steps	from 1 to 3 =	= 1 cycle; rep	eating for a t	otal of 20 cyc	les (= 160 brak	ings)	

(a) Starting temperature of the 1° braking only

- Emergency stop has been included into fatigue test and improved.

TUV fatigue test is too severe (at first cycle, T was > 800 °C !!)

Italy proposal (3):

In Annex 14 (new), the thermal FATIGUE test has been modified for both front and rear discs.

5.1.4.	Rear disc

5.1.4.1. Test program

5.1.4.1.1. Burnishing

According Table A14/5.1.3.1.1.

Table A14/5.1.4.1.1.

Burnishing							
Step	Initial speed [km/h]	Final speed (km/h]	Acceleration (+) and deceleration (-) [m/s²]	Step duration			
1	80	40	- 2	5.56			
2	40	80	+ 3	3.7			
3	80	80		20			
Phase	s 1 to 3 = 1 cycl	e; repeating 19	times the cycle for a total	of 20 cycles			

5.1.4.1.2 Emergency stop

According Table A14/5.1.4.1.2.

Table A14/5.1.4.1.2.

Step	Initial speed % of Vmax (a)	Final speed % of Vmax (a)	Acceleration (+) and deceleration (-)	Step duration	
	[96]	(96]	[m/s ²]	[5]	
1	50	5 (km/h)	- 5	0.095 * Vmax	
2	5 (km/h)	50	+ 3	0.16 * Vmax	
3	50	50		240	

b) Vmax in m/s

5.1.4.1.3 Fatigue test

According Table A14/5.1.4.1.3.

Table A14/5.1.4.1.3.

Step	Initial speed	Final speed	Acceleration (+) and	Step duration
	% of Vmax (a)	% of Vmax (a)	deceleration (-)	(b)
	[96]	[%]	[m/s ²]	[5]
1	50	20	- 3	0.1 * Vmax
2	20	50	+ 6	0.05 * Vmax
3	50	10	- 3	0.14 * Vmax
4	10	50	+ 6	0.067 * Vmax
5	50	20	- 3	0.1 * Vmax
6	20	40	+ 6	0.033 * Vmax
7	40	10	- 2	0.15 * Vmax
8	10	40	+ 6	0.05 * Vmax
9	40	10	- 2	0.15 * Vmax
10	10	50	+6	0.067 * Vmax
11	50	20	- 3	0.1 * Vmax
12	20	40	+ 6	0.033 * Vmax
13	40	10	- 2	0.15 * Vmax
14	10	50	+ 6	0.067 * Vmax

REAR D

5.1.4.	Rear disc
5.1.4.1.	Test program

5.1.4.1.1. Burnishing

According Table A14/5.1.4.1.1.

Table A14/5.1.4.1.1.

	Burnishing										
Step	Vehicle gross weight [kg]	Initial speed [km/h]	Final speed [km/h]	Deceleration [m/s²]	Starting temperature before the brakings [°C]	Brakings quantity []	Rotation speed of the cooling fan [min-1]				
1	55%	60	30	2	100	60	3,000				

5.1.4.1.2 Fatigue test

According Table A14/5.1.4.1.2.

Table A14/5.1.4.1.2.

Step	Vehicle gross	Initial speed	Final speed	Deceleration	Starting	Time between 2	Brakings	Rotation speed
	weight	[km/h]	[km/h]	[m/s ²]	temperature	following	quantity	of the cooling
	[kg]				before the braking [°C]	braking [s]	[]	fan [min ⁻¹]
1 thermal	55%	40% Vmax	20% Vmax	3	100 (a)	30	5	2,000
2 functional	5596	50% Vmax (b) 60% Vmax (c) 75% Vmax (d)	5	4	200		1	3,000
3 mechanic	100%	40% Vmax (b) 48% Vmax (c) 60% Vmax (d)	5	5	200		2	3,000
	Steps	from 1 to 3 =	= 1 cycle; rep	eating for a t	otal of 20 cy	cles (= 160 brak	ings)	•

(c) Disc diameter ≥ 240 mm

(d) Disc diameter $\geq 240 < 26$

Italy proposal (3):

In Annex 14 (new), the thermal FATIGUE test has been modified for both front and rear discs.

5.1	l.5.	Test result (brake disc thermal fatigue test) The test is regarded as having been passed if the cycles prescribed in: (a) Tables A14/5.1.3.1.1. – 5.1.3.1.2. for front discs						
		(b) Tables A14/5.1.4.1.1 5.1.4.1.2. for rear discs						
		are completed without damage or failure.						
Instead of 30		If less than 20 cycles, according to "Thermomechanical Fatigue test" in Instead of 20						
		Tables A14/5.1.3.1.2. and A14/5.1.4.1.2., but more than 15 are completed						
		without damage or failure, then the test must be repeated on a new replacement part.						
		Under these circumstances both tests must complete more than 15 cycles without damage or failure for the part to have passed the test.						
		If less than 15 cycles are completed before damage or failure, then a test should be conducted on the original part and the results compared.						
		If the damage of failure point is no worse than the quantity of cycles of the original part – 10 per cent, then the test is regarded as having been passed.						

The number of cycles have been slightly reduced, BUT the severity of brakins have been also increased.

In Annex 14, "Requirements for replacement brake discs for vehicles of categories L1, L2, L3, L4 and L5"

Paragraph 2.2.4. , correct to read:

"2.2.4. Apply the force F, specified in Table 2.1.2.5. A14/2.2.5., as shown in Fig.1"

Justification: editorial

[AMENDMENT 1]: Include a note (b) in Table A14/5.1.3.1.3 as follows:

5.1.3.1.3. Fatigue test

According Table A14/5.1.3.1.3.

Table A14/5.1.3.1.3.

	Thermal fatigue test										
Step	Vehicle gross	Initial speed	Final speed	Decele-	Starting	Time between 2	Brakings	Rotation speed			
	weight			ration	temperature	following	quantity	of the cooling			
					before the	brakings		fan			
		[km/h]			brakings						
	[kg]		[km/h]	$[m/s^2]$	[°C]	[s]	[]	$[\min^{-1}]$			
1	75% / discs	500/ Vmor	5	7	100	20	5	2 000			
thermal	q.ty	30% villax	3	1	(a)	50	5	2.000			
2	75% / discs	800/ V	5	Q	200		1	2 000			
functional	q.ty	80% v max	5	8	200		1	3.000			
3	100% / discs	(00/ N	F	10	200		2	2 000			
mechanic	q.ty	60% Vmax	5	10	200		2	3.000			
		Ctone from 1	4a 2 1 arealar a		atal af 20 anala	(160 hm)	(b)				

Steps from 1 to 3 = 1 cycle; repeating for a total of 20 cycles (= 160 brakings) (b)

(a) Starting temperature of the 1° braking only

(b) In case of early wear of the friction material of the pads, the use of another pads set is allowed; in this case, before completing the test, the new pads set must be burnished according to paragraph 5.1.3.1.1., always using the brake disc under test.

Justification: The note has been introduced in order to allow the operator to carry out and conclude the test in case of premature wear of the friction material of the pads.

[AMENDMENT 2]: Modify Table A14/5.1.4.1.1 as follows:

- 5.1.4. Rear disc
- 5.1.4.1. Test program
- 5.1.4.1.1. Burnishing

According Table A14/5.1.4.1.1.

Table A14/5.1.4.1.1.

	Burnishing										
St	Vehicle gross	Initial speed	Final speed	Decele-	Starting temperature	Brakings	Rotation speed of t				
ep	weight			ration	before the braking	quantity	cooling fan				
					[°C]						
	[kg]	[km/h]	[km/h]	$[m/s^2]$		[]	$[\min^{-1}]$				
1	50%	60	30	2	100	60	3.000				

Justification: the % of the "vehicle gross weight" has been reduced from 55% to 50% in conformity with what is foreseen in par 5.1.4.1.3.

[AMENDMENT 3]: Include a paragraph 5.1.4.1.2 as follows:

5.1.4.1.2. Fade test

According Table A14/5.1.4.1.2.

Table A14/5.1.4.1.2.

	Fade test											
St	Vehicle gross	Initial speed	Final speed	Decele-	Starting	Time between	Brakings	Rotation speed of				
ep	weight			ration	temperature	2 following	quantity	cooling fan				
					before the	brakings						
					braking							
	[kg]	[km/h]	[km/h]	$[m/s^2]$	[°C]	[s]	[]	[min ⁻¹]				
1	50%	40%Vmax	20%Vmax	2	100	30	15	800				

Justification: the proposed "Fade" test has the aim of stabilising the friction coefficient of pads.

The Fade test has the target of spilling the gas out from friction material, otherwise these gases leak during the "Fatigue" test causing a reduction of the friction coefficient.

This could bring to the need of an increase of braking pressure up to excessive values, so that a sudden consumption of the friction material may happen.

This phenomenon is typical for organic friction material, while pads with sintered friction material are less subject to it.

[AMENDMENT 4]: Modify Table A14/5.1.4.1.3 as follows:

5.1.4.1.3 Fatigue test

According Table A14/5.1.4.1.3.

Table A14/5.1.4.1.3.

			The	ermal fatigue to	est			
Step	Vehicle gross	Initial speed	Final speed	Decele-	Starting	Time between	Brakings	Rotation spee
	weight			ration	temperature	2 following	quantity	of the cooling
					before the	brakings		fan
					brakings			
	[kg]	[km/h]	[km/h]	[m/s ²]	[°C]	[s]	[]	$[\min^{-1}]$
1		400 V	200/ 1/	2	100	20	F	2 000
thermal	50%	40% Villax	20% v max	3	(a)	30	5	2.000
		50% Vmax						
		(b)						
2	50%	60% Vmax	5	4	200		1	3 000
functional	30 76	(c)	-	-	200		1	5.000
		75% Vmax						
		(d)						
		40% Vmax						
		(b)						
3	000/	48% Vmax	5	5	200		2	2 000
mechanic	90%	(c)	5	5	200		2	5.000
		60% Vmax	1					
		(d)						
		Steps from 1 to 3	= 1 cycle; repe	eating for a total	l of 20 cycles (=	= 160 brakings)	(e)	
(a)	Starting tem	perature of the 1° bi	raking only					0

(b) Disc diameter ≤ 245 mm

(c) Disc diameter > 245 < 280 mm

(d) Disc diameter ≥ 280 mm

(e) In case of early wear of the friction material of the pads, the use of another pads set is allowed; in this case, before completing the test, the new pads set must be burnished according to paragraphs 5.1.4.1.1. – 5.1.4.1.2., always using the brake disc under test.

from 55% to 50% (for step 1 and 2) and from 100 to 90% (for step 3), in order to optimize the mechanical stress on the brake disc, so as to reach a Tmax of around 500 °C , instead of 660 °C

Justification 1: the % of "vehicle gross weight" has been reduced

Justification 2: the threshold for the diameter of the rear discs has been modified from 240mm to 245mm in order to take into account a typology of rear discs typically used on sport motorcycles

<u>Justification 3</u>: This note is added to allow the operator to finalize the test in case of premature wear of the friction material of the pads

[AMENDMENT 5]: Amend definition paragraph 2.3.2 as follows:

"*Identification code*" identifies the brake discs or brake drums covered by the braking system approval according to Regulations Nos. 13, and 13-H and 78

Justification: a reference to UN-R78 is needed for braking system of vehicles of category L

[AMENDMENT 6 editorial]: for consistency with R.E.3, modify L1, L2, L3, L4, L5 with: L₁, L₂, L₃, L₄, L₅, throughout the document.

[AMENDMENT 7 editorial]: in Table A14/2.2.5, change the heading "spessore disco" with: "disk thickness".

[AMENDMENT 8 editorial]: in paragraph 3.4.2.1, change "part C" with capital "Part C".

Justification: all editorial

Thank you for the attention !!!

Back up slides – location bore

Back up slides – top hat parallelism

Back up slides – peripherical disc

Back up slides – TUV Fatigue test

Back up slides – New Fatigue test

