

Economic and Social Council

Distr.: General 31 March 2015

Original: English

Economic Commission for Europe

Inland Transport Committee

World Forum for Harmonization of Vehicle Regulations

Working Party on Pollution and Energy

Seventy-first session Geneva, 9-12 June 2015 Item 5 of the provisional agenda Regulations Nos. 85 (Measurement of the net power), 115 (LPG and CNG retrofit systems) and 133 (Recyclability of motor vehicles)

Proposal for amendments to Regulation No. 85 (Measurement of the net power)

Submitted by the expert from the International Organization of Motor Vehicle Manufacturers*

The text reproduced below was prepared by the expert from the International Organization of Motor Vehicle Manufacturers (OICA) and is based on informal document GRPE-70-02 (see report ECE/TRANS/WP.29/GRPE/70, paras. 24-26). The purpose of this proposal is to avoid a duplicated correction of the measured engine power from supercharged and turbocharged engines fitted with a system which allows compensation for ambient conditions such as temperature and altitude. The proposal takes into account the editorial corrections identified by the secretariat in GRPE-70-03. The modifications to the current text of Regulation No. 85 are marked in bold for new or strikethrough for deleted characters.

^{*} In accordance with the programme of work of the Inland Transport Committee for 2012–2016 (ECE/TRANS/224, para. 94 and ECE/TRANS/2012/12, programme activity 02.4), the World Forum will develop, harmonize and update Regulations in order to enhance the performance of vehicles. The present document is submitted in conformity with that mandate.

I. Proposal

Annex 5,

Paragraph 2.3.2., Table 1, footnote 1b, amend to read:

"^{1b} The complete exhaust system shall be fitted as provided for the intended application:

The exit from the engine exhaust system is defined as a point 150 **mm** rom downstream from the termination of the part of the exhaust system mounted on the engine."

Paragraphs 5.4. to 5.4.3. (adding a new paragraph 5.4.3.), amend to read:

- "5.4. Determination of correction factor α_a and α_d^1
- 5.4.1. Naturally aspirated or pressure-charged positive-ignition engine factor α_a

The correction factor α_a is obtained by applying the formula:

$$\alpha_{a} = \left(\frac{99}{P_{s}}\right)^{1.2} \cdot \left(\frac{T}{298}\right)^{0.6} \quad 2$$

Where

Ps is the total dry atmospheric pressure in kilopascals (kPa); that is to say, the total barometric pressure minus water vapour pressure

T is the absolute temperature in kelvins (K) of the air drawn in by the engine.

Conditions to be complied with in the laboratory

For a test to be valid, the correction factor α_a must be such that $0.93 \leq \alpha_a \leq 1.07$

If these limits are exceeded, the corrected value obtained shall be given and the test conditions (temperature and pressure) precisely stated in the test report.

5.4.2. Diesel engines - Factor αd

The power correction factor (α_d) for diesel engines at constant fuel rate is obtained by applying the formula:

Where $\alpha d = (f_a) f_m$

fa is the atmospheric factor

fm is the characteristic parameter for each type of engine and adjustment

5.4.2.1. Atmospheric factor fa

This factor indicates the effects of environmental conditions (pressure, temperature and humidity) on the air drawn in by the engine. The atmospheric factor formula differs according to the type of engine.

¹ The tests may be carried out in air-conditioned test rooms where the atmospheric conditions may be controlled.

² In the case of engines fitted with automatic air temperature control, if the device is such that at full load at 25 °C no heated air is added, the test shall be carried out with the device fully closed. If the device is still operating at 25 °C then the test is made with the device operating normally and the exponent of the temperature term in the correction factor shall be taken as zero (no temperature correction).

5.4.2.1.1. Naturally aspirated and mechanically supercharged engines

$$f_a = \left(\frac{99}{P_s}\right) \cdot \left(\frac{T}{298}\right)^{0.7}$$

5.4.2.1.2. Turbocharged engines with or without cooling of inlet air

$$\mathbf{f}_{a} = \left(\frac{99}{P_{s}}\right)^{0.7} \cdot \left(\frac{T}{298}\right)^{1.5}$$

5.4.2.2. Engine factor fm

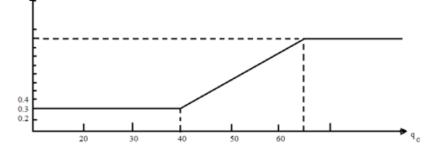
fm is a function of qc (fuel flow corrected) as follows:

 $f_m = 0.036 q_c - 1.14$

Where: $q_c = q/r$

Where:

q is the fuel flow in milligram per cycle per litre of total swept volume (mg/(l.cycle))


r is the pressure ratio of compressor outlet and compressor inlet

(r = 1 for naturally aspirated engines)

This formula is valid for a value interval of q_c included between 40 mg/(l.cycle) and 65 mg/(l.cycle.)

For q_c values lower than 40 mg/(l.cycle), a constant value of f_m equal to 0.3 (fm= 0.3) will be taken.

For qc values higher than 65 mg/(l.cycle), a constant value of f_m equal to 1.2 ($f_m = 1.2$) will be taken (see figure):

5.4.2.3. Conditions to be complied with in the laboratory

For a test to be valid; the correction factor αd must be such that $0.9 \le \alpha d \le 1.1$ If these limits are exceeded, the corrected value obtained shall be given and the test conditions (temperature and pressure) precisely stated in the test report.

5.4.3. When a turbocharged engine is fitted with a system which allows compensating the ambient conditions temperature and altitude, at the request of the manufacturer, the correction factor α_a or α_d shall be set to the value of 1."

Appendix,

Item 4, amend to read:

...

"4.

Engine speed, min ⁻¹	
Net torque power , kW	
Net torque, Nm	

II. Justification

The correction factor may lead to a duplicated correction for supercharged and turbocharged engines equipped with a self-correction ability, resulting in a test result that differs from the actual engine power. This proposal aims at obtaining a more accurate test result by not accepting corrections for these engines.