Status of the WorldSID injury risk curves

on behalf of ISO/WG6

March, 2012

Outline

- Conclusion of the work included in the TR12350 and in Stapp 2009
- Definition of guidelines to build injury risk curves
- Selection of injury risk curves
 - ✓ Based on Akaike (AIC) criterion
 - \checkmark Based on the quality index
 - ✓ Based on engineering judgment
- WorldSID 50th injury risk curves

Conclusion of the work included in the TR12350 and in Stapp 2009

- Injury risk curves constructed:
 - ✓ Based on selected PMHS samples
 - \checkmark For commonly used measurements
 - ✓ With commonly used statistical methods
 - ✓ Without correction for age and for 45-year-old
- TR12350 updated with a new methodology and the injury risk curves dedicated to the WorldSID 50th percentile
- Publication at Stapp 2009 providing the injury risk curve adjusted to 45-year-old

Injury risk curves as proposed in Stapp 2009

5 5	I I I		1
Shoulder	Thorax	Abdomen	Pelvis
		Abdomen injury risk AIS2+ as a function of abdomen rib deflection	
	Thoracic skeletal injury risk AIS3+ as a function of rib deflection	Abdomen injury risk AIS3+ as a function of abdomen rib deflection	Pelvis injury risk AIS2+ as a function of pubic force
Shoulder injury risk AIS2+ as a function of shoulder force	Thoracic skeletal injury risk AIS4+ as a function of rib deflection	Abdomen injury risk AIS2+ as a function of abdomen rib VC	Pelvis injury risk AIS3+ as a function of pubic force
Shoulder injury risk AIS2+ as a function of shoulder deflection	Thoracic skeletal injury risk AIS3+ as a function of rib VC	Abdomen injury risk AIS3+ as a function of abdomen rib VC	Pelvis injury risk AIS2+ as a function of pelvis acceleration
	Thoracic skeletal injury risk AIS4+ as a function of rib VC	Abdomen injury risk AIS2+ as a function of lower spine acceleration	Pelvis injury risk AIS3+ as a function of pelvis acceleration
		Abdomen injury risk AIS3+ as a function of lower spine acceleration	
			4

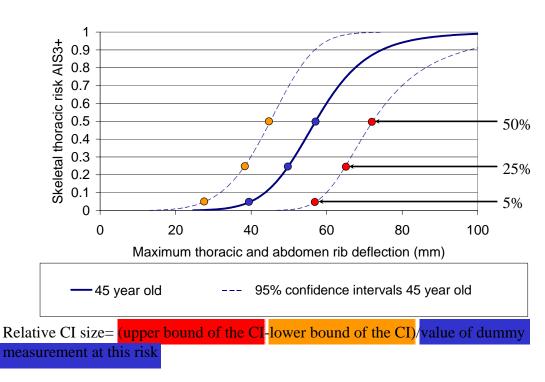
Definition of guidelines to build injury risk curves

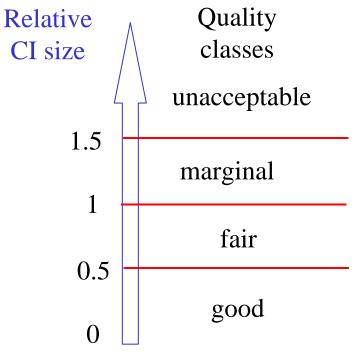
- ISO/WG6 agreed on guidelines to build injury risk curves
- These guidelines include several steps
- Among those:
 - \checkmark The use of the survival analysis
 - ✓ The release of the injury risk curves associated to a quality index based on the width of the confidence intervals
 - ✓ The recommandation of an injury risk curve per body region, injury type and injury level

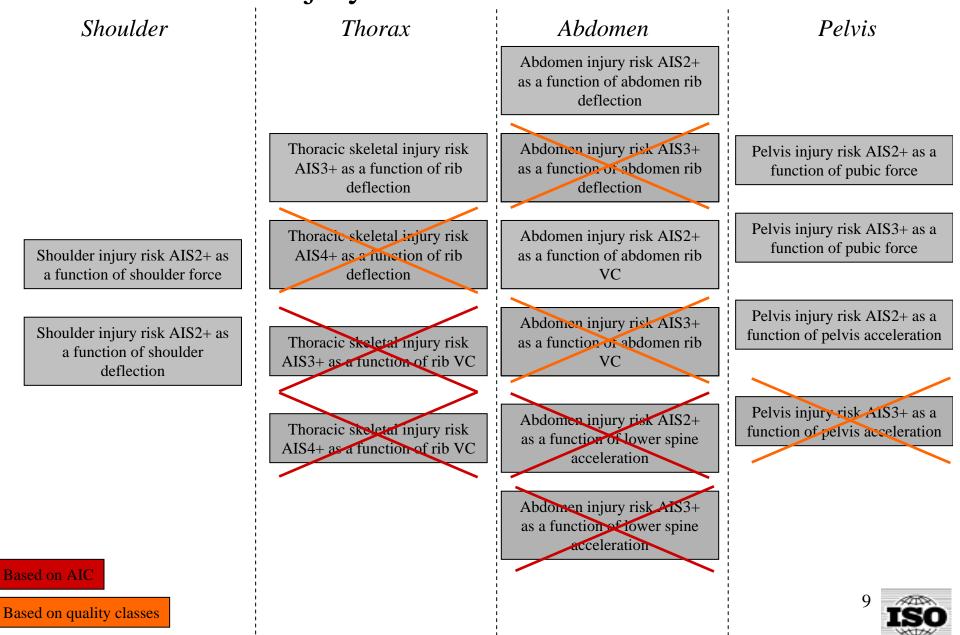
Selection of injury risk curves

- Based on the Akaike (AIC) criterion
 - Based on maximum likelihood but weighted by the number of variables
 - ✓ Only possible comparing two injury risk curves built with identical samples

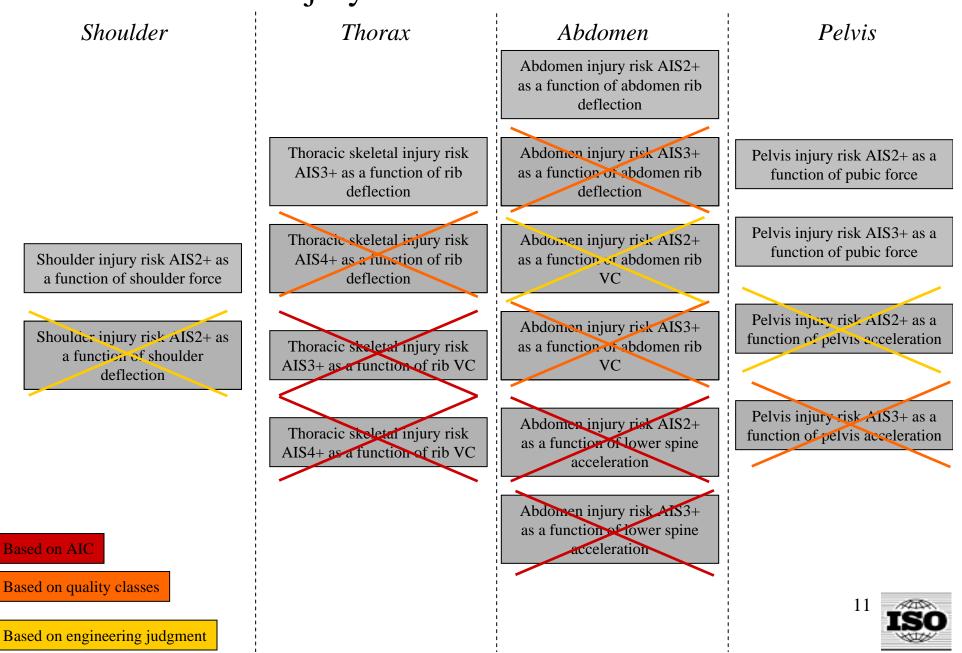
Shoulder Thorax Abdomen Pelvis Abdomen injury risk AIS2+ as a function of abdomen rib deflection Thoracic skeletal injury risk Abdomen injury risk AIS3+ Pelvis injury risk AIS2+ as a AIS3+ as a function of rib as a function of abdomen rib function of pubic force deflection deflection Pelvis injury risk AIS3+ as a Thoracic skeletal injury risk Abdomen injury risk AIS2+ function of pubic force Shoulder injury risk AIS2+ as AIS4+ as a function of rib as a function of abdomen rib a function of shoulder force deflection VC Pelvis injury risk AIS2+ as a Abdomen injury risk AIS3+ Shoulder injury risk AIS2+ as function of pelvis acceleration Thoracic skeletal injury risk as a function of abdomen rib a function of shoulder AIS3+ as a function of rib VC VC deflection Pelvis injury risk AIS3+ as a Abdomen injury risk AIS2+ Thoracic skeletal injury risk function of pelvis acceleration as a function of lower spine AIS4+ as a function of rib VC acceleration Abdomen injury risk AIS3+ as a function of lower spine acceleration


Selection of the injury risk curves


Based on AIC


Selection of injury risk curves

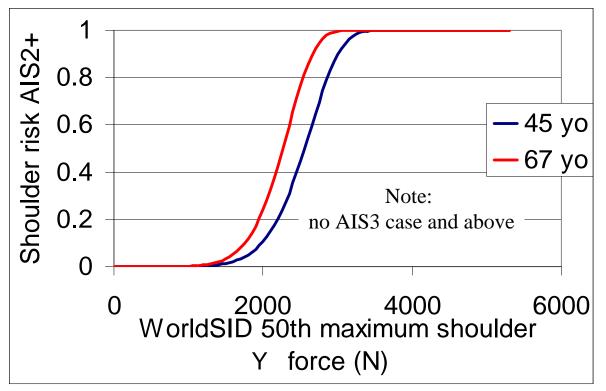
- Based on the quality index
 - Based on width of the confidence intervals
 - Curves with unacceptable quality classes are not recommended



Selection of the injury risk curves

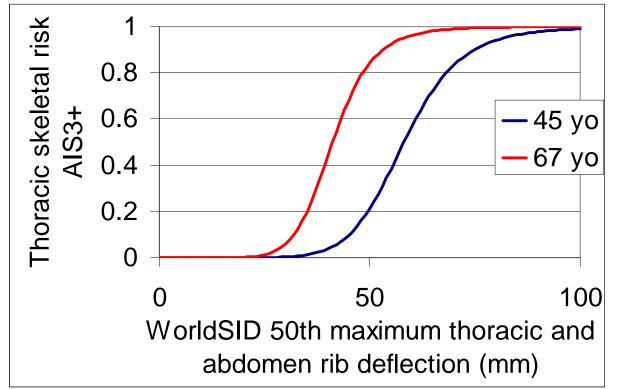
Selection of injury risk curves

- Based on engineering judgment
 - ✓ SHOULDER: The test sample used for the construction of the IRC as a function of the shoulder deflection includes only impactor tests, while the sample for the construction of the IRC as a function of the shoulder force includes both impactor and sled tests
 - Recommendation of the IRC as a function of the shoulder force
 - ✓ ABDOMEN: The quality index is better for the curve as a function of the abdomen rib deflection than for the one as a function of the abdomen rib VC
 - Recommendation of the IRC as a function of the maximum abdomen rib deflection
 - ✓ PELVIS: Most of the injuries observed in the PMHS tests used to build the injury risk curves are related to ilio-ischio rami and pubic symphysis
 - Recommendation of the dummy measurement which is the more closely related to these injuries: pubic force


Selection of the injury risk curves

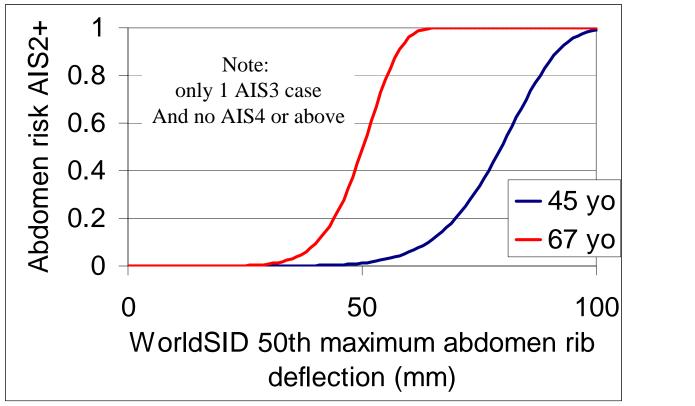
- at 45 yo (target age of the occupant to protect)
- and at the median age of the PMHS used to build the curve (age closer to those of the PMHS \rightarrow more information available \rightarrow confidence in the curves is more important)

> Shoulder injury risk AIS2+


Maximum shoulder Y force (N)	5% AIS2+	quality index at 5% AIS2+	25% AIS2+	quality index at 25% AIS2+	50% AIS2+	quality index at 50% AIS2+
45 year old	1799	fair	2270	fair	2556	fair
67 year old	1594	good	2011	good	2265	good

Thoracic skeletal injury risk AIS3+

Maximum thorax and abdomen rib deflection (mm)*	5% AIS3+	quality index at 5% AIS3+	25% AIS3+	quality index at 25% AIS3+	50% AIS3+	quality index at 50% AIS3+
45 year old	41.4	fair	51.2	fair	58.1	good
67 year old	29.3	fair	36.3	good	41.2	good

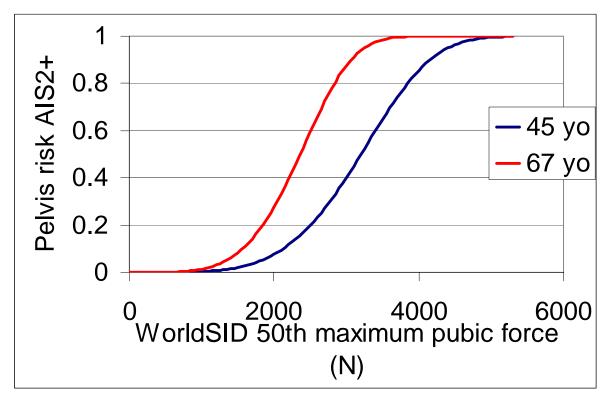


* Measured by 1D IR-TRACC

Abdomen injury risk AIS2+

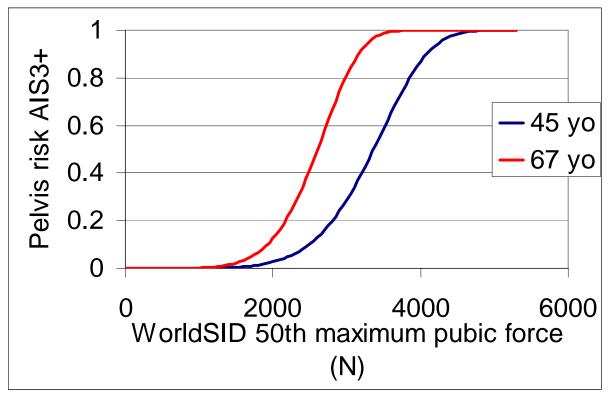
Maximum abdomen rib deflection (mm) *	5% AIS2+	quality index at 5% AIS2+	25% AIS2+	quality index at 25% AIS2+	50% AIS2+	quality index at 50% AIS2+
45 year old	58.9	fair	72.0	fair	79.8	fair
67 year old	37.1	fair	45.3	good	50.2	good

* Measured by 1D IR-TRACC



- Skeletal thoracic injury risk is determined as a function of the maximum of the thoracic and <u>abdomen rib deflection</u>
- Abdomen injury risk is determined as a function of the maximum <u>abdomen</u> <u>rib deflection</u>
- Given the injury thresholds presented in the two previous slides, if the skeletal injury risk is below a given level, the abdomen risk will also be below this level of risk

Pelvis injury risk AIS2+


Maximum pubic force (N)	5% AIS2+	quality index at 5% AIS2+	25% AIS2+	quality index at 25% AIS2+	50% AIS2+	quality index at 50% AIS2+
45 year old	1818	fair	2645	marginal	3202	marginal
67 year old	1340	fair	1950	good	2361	good

Pelvis injury risk AIS3+

Maximum pubic force (N)	5% AIS3+	quality index at 5% AIS3+	25% AIS3+	quality index at 5% AIS3+	50% AIS3+	quality index at 5% AIS3+
45 year old	2214	marginal	2922	marginal	3365	marginal
67 year old	1714	good	2262	good	2605	good

- Agreement within ISO/WG6
- TR12350 to be updated early 2012

 \checkmark Vote by the ISO/SC12 by the end of 2012

