Informal document No. **GRPE-63-21** (63rd GRPE, 17-20 January 2012, agenda item 8(a))

Transmitted by the chairman of the GFV Group

# PROPOSAL FOR A DRAFT SUPPLEMENT TO the 6<sup>th</sup> series of amendments to REGULATION No. 49 (rev.6)

<u>Note</u>: The text reproduced below was prepared by the experts from the informal HDDF Task Force within the GFV informal working group in order to enable the type approval of new EURO VI heavy duty dual-fuel engines and vehicles

#### A. PROPOSAL

#### A1. Modifications to section 2 ("Definitions")

Section 2 is amended to include:

#### "Dual-fuel engine"

means an engine that is designed to simultaneously operate with diesel fuel and a gaseous fuel, both fuels being metered separately, where the consumed amount of one of the fuels versus the other one may vary depending on the operation.

#### "Dual-fuel vehicle"

means a vehicle that is powered by a dual-fuel engine and that supplies the fuels used by the engine from separate on-board storage systems.

#### "Dual-fuel mode"

means the normal operating mode of a dual-fuel engine during which the engine uses simultaneously diesel fuel and a gaseous fuel at some engine operating conditions.

#### "Diesel mode"

means the normal operating mode of a dual-fuel engine during which the engine does not use any gaseous fuel at any engine operating condition.

#### "Service mode"

means a special mode of a dual-fuel engine that is activated for the purpose of repairing, or of moving the vehicle from the traffic when operation in the dual-fuel mode is not possible.<sup>1</sup>

GRPE-63-21e.doc page 1 / 30

for example in case of an empty gas tank

# **A2.** Modifications to section 4 ("Approval")

Paragraph 4.1 is amended to read:

4.1. In order to receive a type-approval of an engine system or engine family as a separate technical unit, type-approval of a vehicle with an approved engine system with regard to emissions, or a type-approval of a vehicle with regard to emissions, the manufacturer shall, in accordance with the provisions of this Regulation demonstrate that the vehicles or engine systems are subject to the tests and comply with the requirements set out in Annexes 4, 6, 7, 9A, 9B, 9C, 10, 11, and 12, and, when appropriate, Annex 15. The manufacturer shall also ensure compliance with the specifications of reference fuels set out in Annex 5.

#### Section 4.6 is amended to read:

- 4.6. Requirements on universal fuel range type-approval
- 4.6.1. The parent engine shall meet the requirements of this Regulation on the appropriate reference fuels specified in Annex 5. Specific requirements shall apply to **engines fuelled with natural gas / biomethane (incl. dual-fuel engines)**, as laid down in paragraph 4.6.3.
- 4.6.2. If the manufacturer permits to operate the engine family to run on market fuels not covered by the reference fuels included in Annex 5 or the relevant market fuel standards (for example EN 228 CEN standards in the case of unleaded petrol and EN 590 CEN standard in the case of diesel), such as running on B100, the manufacturer shall, in addition to the requirements in paragraph 4.6.1.:
  - (a) declare the fuels the engine family is capable to run on in paragraph 3.2.2.2.1. of Part 1 of Annex 1;
  - (b) demonstrate the capability of the parent engine to meet the requirements of this Regulation on the fuels declared;
  - (c) be liable to meet the requirements of in-service conformity specified in paragraph 9. on the fuels declared, including any blend between the declared fuels and the relevant market fuels and standards.
- 4.6.3. In the case of a natural gas / **biomethane** fuelled engine the manufacturer shall demonstrate the parent engines capability to adapt to any fuel composition that may occur across the market.
- 4.6.3.1 In the case of compressed natural gas / biomethane (CNG) there are generally two types of fuel, high calorific fuel (H-gas) and low calorific fuel (L-gas), but with a significant spread within both ranges; they differ significantly in their energy content expressed by the Wobbe Index and in their  $\lambda$ -shift factor ( $S_{\lambda}$ ). Natural gases with a  $\lambda$ -shift factor between 0.89 and 1.08 (0.89  $\leq S_{\lambda} \leq$  1.08) are considered to belong to H-range, while natural gases with a  $\lambda$ -shift factor between 1.08 and 1.19 (1.08  $\leq S_{\lambda} \leq$  1.19) are considered to belong to L-range. The composition of the reference fuels reflects the extreme variations of  $S_{\lambda}$ .

The parent engine shall meet the requirements of this Regulation on the reference fuels  $G_R$  (fuel 1) and  $G_{25}$  (fuel 2), as specified in Annex 5, without any **manual** readjustment to the

**engine fuelling system** between the two tests (**self-adaptation is required**). One adaptation run over one WHTC hot cycle without measurement is permitted after the change of the fuel. After the adaptation run the engine shall be cooled down in accordance with paragraph 7.6.1. of Annex 4.

- 4.6.3.1.1. At the manufacturer's request the engine may be tested on a third fuel (fuel 3) if the  $\lambda$ -shift factor  $(S_{\lambda})$  lies between 0.89 (that is the lower range of  $G_R$ ) and 1.19 (that is the upper range of  $G_{25}$ ), for example when fuel 3 is a market fuel. The results of this test may be used as a basis for the evaluation of the conformity of the production.
- 4.6.3.2 In the case of liquefied natural gas / liquefied biomethane (LNG) the parent engine shall meet the requirements of this Regulation on the reference fuels  $G_R$  (fuel 1) and  $G_{20}$  (fuel 2), as specified in Annex 5, without any manual readjustment to the engine fuelling system between the two tests (self adaptation is required). One adaptation run over one WHTC hot cycle without measurement is permitted after the change of the fuel. After the adaptation run the engine shall be cooled down in accordance with paragraph 7.6.1. of Annex 4.
- 4.6.4. In the case of an engine fuelled with **compressed natural gas / biomethane (CNG)** which is self-adaptive for the range of H-gases on the one hand and the range of L-gases on the other hand, and which switches between the H-range and the L-range by means of a switch, the parent engine shall be tested on the relevant reference fuel as specified in Annex 5 for each range, at each position of the switch. The fuels are G<sub>R</sub> (fuel 1) and G<sub>23</sub> (fuel 3) for the H-range of gases and G<sub>25</sub> (fuel 2) and G<sub>23</sub> (fuel 3) for the L-range of gases. The parent engine shall meet the requirements of this Regulation at both positions of the switch without any readjustment to the fuelling between the two tests at each position of the switch. One adaptation run over one WHTC hot cycle without measurement is permitted after the change of the fuel. After the adaptation run the engine shall be cooled down in accordance with paragraph 7.6.1. of Annex 4.

#### Section 4.7 is amended to read:

4.7. Requirements on restricted fuel range type-approval in case of positive ignition engines fuelled with **compressed natural gas / biomethane** (CNG) or LPG.

Paragraph 4.9 is amended and renumbered to read:

4.5.1. Tables summarising the requirements for approval of NG-Fuelled engines, LPG-Fuelled engines and dual-fuelled engines are provided in Appendix 4.

Section 4.8 is renumbered, to read:

4.9. Exhaust emissions type-approval of a member of a family

GRPE-63-21e.doc page 3 / 30

A new section 4.8 is introduced, to read:

4.8. Requirements on fuel specific type-approval in case of engines fuelled with liquefied natural gas / liquefied biomethane (LNG)

In case of liquefied natural gas / liquefied biomethane, a fuel specific typeapproval may be granted subject to the requirements specified in points 4.8.1. to 4.8.3.

- 4.8.1. Conditions for applying for a fuel specific type approval in case of engines fuelled with liquefied natural gas / liquefied biomethane (LNG).
- 4.8.1.1. The manufacturer can only apply for a fuel specific type-approval in case of the engine being calibrated for a specific gas composition resulting in a  $\lambda$ -shift factor not differing by more than 3% the  $\lambda$ -shift factor of the  $G_{20}$  fuel specified in Annex 5 to this Regulation, and the ethane content of which does not exceed [1.5%]
- 4.8.1.2. In all other cases the manufacturer shall apply for a universal fuel type approval according to the specifications of sections 4.6.3.2.
- 4.8.2 Test requirements
- 4.8.2.1 In case of engines calibrated for a specific gas composition resulting in a  $\lambda$ -shift factor not differing by more than 3% the  $\lambda$ -shift factor of the  $G_{20}$  fuel specified in Annex 5 to this Regulation, and the ethane content of which does not exceed [1.5%], the parent engine shall only be tested on the  $G_{20}$  reference gas fuel, as specified in Annex 5 of this Regulation.
- 4.8.3 Labeling rules

[To be documented]

Paragraph 4.12.3.3.6 is completed, to read:

- 4.12.3.3.6. For natural gas / biomethane fuelled engines the approval mark shall contain a letter/s after the national symbol. In order to distinguish for which range of gases the approval has been granted, this letter/s will be as follows:
  - (d) H in case of the engine being approved and calibrated for the H-range of gases;
  - (e) L in case of the engine being approved and calibrated for the L-range of gases;
  - (f) HL in case of the engine being approved and calibrated for both the H-range and L-range of gases;
  - (g) Ht in case of the engine being approved and calibrated for a specific gas composition in the H-range of gases and transformable to another specific gas in the H-range of gases by fine tuning of the engine fuelling;

- (h) Lt in case of the engine being approved and calibrated for a specific gas composition in the L-range of gases and transformable to another specific gas in the L-range of gases after fine tuning of the engine fuelling;
- (i) HLt in the case of the engine being approved and calibrated for a specific gas composition in either the H-range or the L-range of gases and transformable to another specific gas in either the H-range or the L-range of gases by fine tuning of the engine fuelling.
- (j) LNG<sub>20</sub> in case of the engine being approved and calibrated for a specific liquefied natural gas / liquefied biomethane composition resulting in a  $\lambda$ -shift factor not differing by more than 3% the  $\lambda$ -shift factor of the G<sub>20</sub> gas specified in Annex 5 of this Regulation, and the ethane content of which does not exceed [1.5%]
- (k) LNG in case of the engine being approved and calibrated for any other liquefied natural gas / liquefied biomethane composition

A new paragraph 4.12.3.3.7 is introduced to read:

4.12.3.3.7. For dual-fuel engines the approval mark shall contain a series of digits after the national symbol, the purpose of which is to distinguish for which dual-fuel engine type and with which range of gases the approval has been granted.

This series of digits will be constituted of two digits for the dual-fuel type followed by the letter(s) specified in paragraphs 4.12.3.3.1 to 4.12.3.3.6. as appropriate.

The two digits identifying the dual-fuel engines types are the following:

- 1A for dual-fuel engines of Type 1A;
- 1B for dual-fuel engines of Type 1B;
- 2A for dual-fuel engines of Type 2A;
- 2B for dual-fuel engines of Type 2B;
- 3B for dual-fuel engines of Type 3B;

#### A3. Modifications to section 6 ("Installation on the vehicle")

In section 6.2 ("Installation of a type-approved engine on a vehicle") a new section 6.2.1 is introduced, to read:

6.2.1 The installation of a dual-fuel engine type-approved as a separate technical unit on a vehicle shall, in addition, meet the requirements of section 6.3 of Annex 15 and according to section 8.2 of Annex 15, meet the manufacturer's installation requirements as specified in Part 1 of Annex 1;

#### A4. Modifications to section 7 ("Engine Family")

Paragraph 7.1 is completed, to read:

GRPE-63-21e.doc page 5 / 30

7.1 Parameters defining the engine family

The engine family, as determined by the engine manufacturer shall comply with paragraph 5.2. of Annex 4.

In case of a dual-fuel engine, the engine family, as determined by the engine manufacturer shall also comply with the additional requirements of section 3.1. of Annex 15.

Paragraph 7.3 is renumbered, to read:

**7.4.** Parameters for defining an OBD-engine family

A new section 7.3 is introduced, to read:

- 7.3. Extension to include a new engine system into an engine-family
- 7.3.1. At the request of the manufacturer and upon approval of the Approval Authority, a new engine system may be included as a member of a certified engine family if the criteria specified in paragraph 7.1. are met.
- 7.3.2. If the elements of design of the parent engine system are representative of those of the new engine system according to paragraph 7.2 or, in the case of dual-fuel engines, to paragraph 3.1.2. of Annex 15, then the parent engine system shall remain unchanged and the manufacturer shall modify the information document specified in Annex 1 of this Regulation.
- 7.3.3. If the new engine system contains elements of design that are not represented by the parent engine system according to paragraph 7.2 or, in the case of dual-fuel engines, to paragraph 3.1.2. of Annex 15 but itself would represent the whole family according to these paragraphs, then the new engine system shall become the new parent engine. In this case the new elements of design shall be demonstrated to comply with the provisions of this Regulation and the information document specified in Annex 1 of this Regulation shall be modified.
- A5. Modifications to Appendix 4 ("Summary of approval process")

Title is amended, to read:

Summary of approval process for dual-fuel engines fuelled with natural gas / biomethane or LPG

A new table is introduced, to read:

|    | Diesel mode           | Dual-fuel mode                             |                        |                              |                                            |  |  |
|----|-----------------------|--------------------------------------------|------------------------|------------------------------|--------------------------------------------|--|--|
|    | Diesei mode           | CNG                                        | LNG                    | LNG <sub>20</sub>            | LPG                                        |  |  |
| 1A |                       | Universal<br>or<br>restricted<br>(2 tests) | Universal<br>(2 tests) | Fuel<br>specific<br>(1 test) | Universal<br>or<br>restricted<br>(2 tests) |  |  |
| 1B | Universal<br>(1 test) | Universal<br>or<br>restricted<br>(2 tests) | Universal<br>(2 tests) | Fuel<br>specific<br>(1 test) | Universal<br>or<br>restricted<br>(2 tests) |  |  |
| 2A |                       | Universal<br>or<br>restricted<br>(2 tests) | Universal<br>(2 tests) | Fuel<br>specific<br>(1 test) | Universal<br>or<br>restricted<br>(2 tests) |  |  |
| 2B | Universal<br>(1 test) | Universal<br>or<br>restricted<br>(2 tests) | Universal<br>(2 tests) | Fuel<br>specific<br>(1 test) | Universal<br>or<br>restricted<br>(2 tests) |  |  |
| 3В | Universal<br>(1 test) | Universal<br>or<br>restricted<br>(2 tests) | Universal<br>(2 tests) | Fuel<br>specific<br>(1 test) | Universal<br>or<br>restricted<br>(2 tests) |  |  |

#### **A6.** Modifications to Appendix 1 to Annex 1

New explanatory notes to Annexes 1, 2A, 2B, and 2C are introduced, to read:

- (d) When required by this Regulation
- (df) In case of a dual-fuel engine or vehicle
- (dg) Except for dual-fuel engines or vehicles
- (dh) In case of a dual-fuel engine or vehicle, the type of gaseous fuel used in dual-fuel mode shall not be struck out
- (di) In the case of Type 1B, type 2B, and Type 3B of dual-fuel engines

#### A7. Modifications to Part 1 of Annex 1

Row 3.2.1.1 is amended, to read:

3.2.1.1. Working principle: positive ignition/compression ignition/**dual-fuel** (1) Cycle four stroke / two stroke/ rotary (1)

A new row 3.2.1.1.1 is introduced, to read:

3.2.1.1.1. Type of dual-fuel engine: Type 1A/Type 1B/Type 2A/Type 2B/Type 3B (1) (df) Gas Energy Ratio over the hot part of the WHTC test-cycle (df):......%

A new row 3.2.1.6.2 is introduced, to read:

GRPE-63-21e.doc page 7 / 30

| 3.2.1.6.2.             | Idle on Diesel: yes/no (1) (df)                                                                                                                                                                                        |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | 2 is amended, to read: Heavy duty vehicles Diesel/Petrol/LPG/NG-H/NG-L/NG-HL/Ethanol (ED95)/Ethanol (E85)/dual-fuel (1) (dh)                                                                                           |
|                        | 2 is amended, to read: By fuel injection ( <b>only</b> compression ignition <b>or dual-fuel</b> ): yes/no (1)                                                                                                          |
|                        | 3.2.12.7.0.6 is introduced, to read:  6. When appropriate, manufacturer reference of the documentation for installing the dual-fuel engine in a vehicle                                                                |
| Row 3.2.17<br>3.2.17.  | 7 is amended, to read: Specific information related to gas fuelled engines <b>and dual-fuel engines</b> for heavy-duty vehicles (in the case of systems laid out in a different manner, supply equivalent information) |
|                        | 1 is amended, to read: CO2 mass emissions WHSC test (dg)                                                                                                                                                               |
|                        | 3.5.4.1.1 is introduced, to read:  For dual-fuel engines, CO2 mass emissions WHSC test in diesel mode (d) (if applicable):                                                                                             |
| Row 3.5.4.2.           | 2 is amended, to read: CO2 mass emissions WHTC test (dg). g/kWh                                                                                                                                                        |
|                        | 3.5.4.2.1 is introduced, to read:  For dual-fuel engines, CO2 mass emissions WHTC test in diesel mode 'd'                                                                                                              |
| Row 3.5.5.<br>3.5.5.1. | 1 is amended, to read: Fuel consumption WHSC test (dg)                                                                                                                                                                 |
|                        | 3.5.5.1.1 is introduced, to read:  For dual-fuel engines, Fuel consumption WHSC test in diesel mode (d)                                                                                                                |
|                        | 2 is amended, to read: Fuel consumption WHTC test (dg): g/kWh                                                                                                                                                          |

|                                                                    | For dual-fuel engines, Fuel consumption WHTC test in diesel mode (d)                                                                                                                        |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>A8.</b> M                                                       | Iodifications to the Appendix to information document in Annex 1                                                                                                                            |
| Paragraph                                                          | 5.1. is amended, to read:                                                                                                                                                                   |
| 5.1.                                                               | Engine test speeds for emissions test according to annex 4 (9) or Engine test speeds for emissions test in dual-fuel mode according to annex 4 (9)(df)                                      |
| A new sec                                                          | tion 5.1.1. is introduced, to read:                                                                                                                                                         |
| 5.1.1.                                                             | Engine test speeds for emissions test in diesel mode according to annex 4 (9)(df)(di)  Low speed (nlo)rpm  High speed (nhi)rpm  Idle speedrpm  Preferred speedrpm  n95hrpm                  |
| Paragraph                                                          | 5.2. is amended, to read:                                                                                                                                                                   |
| 5.2.                                                               | Declared values for power test according to Regulation 85 or Declared values for power test in dual-fuel mode according to Regulation 85 (df)                                               |
| A new sec                                                          | tion 5.2.6 is introduced, to read:                                                                                                                                                          |
| 5.2.6.<br>5.2.6.1.<br>5.2.6.2.<br>5.2.6.3.<br>5.2.6.4.<br>5.2.6.5. | Declared values for power test in diesel mode according to Regulation 85 (df)(di)  Idle speedrpm  Speed at maximum powerrpm  Maximum powerkW  Speed at maximum torquerpm  Maximum torquerpm |

Paragraph 1.1.5 is completed, to read:

**A9.** 

A new row 3.5.5.2.1 is introduced, to read:

GRPE-63-21e.doc page 9 / 30

Modifications to the Addenda in Annexes 2A and 2C

# 1.1.5 Category of engine: Diesel/Petrol/LPG/NG-H/NG-L/NG-HL/Ethanol (ED95)/ Ethanol (E85)/dual-fuel (1) (dh)

New paragraph 1.1.5.1 is introduced, to read:

# 1.1.5.1. Type of dual-fuel engine: Type 1A/Type 1B/Type 2A/Type 2B/Type 3B $^{(1)}$ (df)

Paragraph 1.4 is amended, to read:

1.4. Emission levels of the engine/parent engine (1):

Deterioration Factor (DF): calculated/fixed<sup>(1)</sup>

Specify the DF values and the emissions on the WHSC (if applicable) and WHTC tests in the table below

**In case of engines** If CNG and LPG fuelled engines are tested on different reference fuels (whether NG or LPG), the tables shall be reproduced for each reference fuel tested.

In case of Type 1B and Type 2B dual-fuel engines, the tables shall be reproduced for each mode tested (dual-fuel and diesel modes)

# Table 4 is amended, to read:

| WHSC test (if applicable)                                     |                        |                    |                     |          |          |     |           |  |
|---------------------------------------------------------------|------------------------|--------------------|---------------------|----------|----------|-----|-----------|--|
| DF                                                            | CO                     | THC <sup>(d)</sup> | NMHC <sup>(d)</sup> | NOX      | PM Mass  | NH3 | PM Number |  |
| Mult/add <sup>(1)</sup>                                       |                        |                    |                     |          |          |     |           |  |
| Emissions                                                     | CO                     | $THC^{(d)}$        | NMHC <sup>(d)</sup> | NOX      | PM Mass  | NH3 | PM Number |  |
| EIIIISSIOIIS                                                  | (mg/kWh)               | (mg/kWh)           | (mg/kWh)            | (mg/kWh) | (mg/kWh) | ppm | (#/kWh)   |  |
| Test result                                                   |                        |                    |                     |          |          |     |           |  |
| Calculated                                                    | Calculated             |                    |                     |          |          |     |           |  |
| with DF                                                       |                        |                    |                     |          |          |     |           |  |
| CO <sub>2</sub> emissions mass emission <sup>(d)</sup> :g/kWh |                        |                    |                     |          |          |     |           |  |
| Fuel consum                                                   | ption <sup>(d)</sup> : |                    |                     |          | g/kWh    |     |           |  |

# Table 5 is amended, to read:

| WHTC test                                                    |        |             |                     |              |          |          |     |           |
|--------------------------------------------------------------|--------|-------------|---------------------|--------------|----------|----------|-----|-----------|
| DF                                                           | CO     | $THC^{(d)}$ | NMHC <sup>(d)</sup> | $CH_4^{(d)}$ | NOx      | PM Mass  | NH3 | PM Number |
| Mult/add <sup>(1)</sup>                                      |        |             |                     |              |          |          |     |           |
| Emiggiona                                                    | CO     | $THC^{(d)}$ | NMHC <sup>(d)</sup> | $CH_4^{(d)}$ | NOx      | PM Mass  | NH3 | PM Number |
| Emissions                                                    | mg/kWh | (mg/kWh)    | (mg/kWh)            | (mg/kWh)     | (mg/kWh) | (mg/kWh) | ppm | (#/kWh)   |
| Cold start                                                   |        |             |                     |              |          |          |     |           |
| Hot start w/o                                                |        |             |                     |              |          |          |     |           |
| regeneration                                                 |        |             |                     |              |          |          |     |           |
| Hot start with                                               |        |             |                     |              |          |          |     |           |
| regeneration <sup>(1)</sup>                                  |        |             |                     |              |          |          |     |           |
| $k_{r,u}$ (mult/add) $^{(1)}$                                |        |             |                     |              |          |          |     |           |
| $k_{r,d}$ (mult/add) (1)                                     |        |             |                     |              |          |          |     |           |
| Weighted test                                                |        |             |                     |              |          |          |     |           |
| result                                                       |        |             |                     |              |          |          |     |           |
| Final test result                                            |        |             |                     |              |          |          |     |           |
| with DF                                                      |        |             |                     |              |          |          |     |           |
| CO <sub>2</sub> emissions mass emission <sup>(d)</sup> g/kWh |        |             |                     |              |          |          |     |           |
| Fuel consumption <sup>(d)</sup> :g/kWh                       |        |             |                     |              |          |          |     |           |

## A10. Modifications to Annex 3

Table 2 is amended, to read:

Engine type codes for approval marks

| Engine type                     | Code                       |
|---------------------------------|----------------------------|
| Diesel fuelled CI engine        | D                          |
| Ethanol (ED95) fuelled CI       | ED                         |
| engine                          | ĽD                         |
| Ethanol (E85) fuelled PI engine | E85                        |
| Petrol fuelled PI engine        | P                          |
| LPG fuelled PI engine           | Q                          |
|                                 | See paragraph              |
| Natural gas fuelled PI engine   | 4.12.3.3.6. of this        |
|                                 | Regulation                 |
|                                 | See paragraph              |
| Dual-fuel engines               | <b>4.12.3.3.7.</b> of this |
|                                 | Regulation                 |

# **A11.** Modifications to Annex 5 (reference fuels)

Section "data for CI engines" is amended, to read:

Technical data on fuels for testing compression-ignition and dual-fuel engines

Section "data for CI engines" is numbered and amended, to read:

Technical data on fuels for testing positive-ignition and dual-fuel engines

A new type is added to the section "data for CI and HDDF engines", to read:

# Type: NG/Biomethane

| Characteristics  | Units                          | Basis | Limits  |         | Test method |  |  |
|------------------|--------------------------------|-------|---------|---------|-------------|--|--|
|                  |                                |       | minimum | maximum |             |  |  |
| Reference fuel ( | Reference fuel G <sub>20</sub> |       |         |         |             |  |  |
| Composition:     |                                |       |         |         |             |  |  |
| Methane          | % mole                         | 100   | 99      | 100     | ISO 6974    |  |  |
| Balance (1)      | % mole                         | _     | _       | 1       | ISO 6974    |  |  |
| $N_2$            | % mole                         |       |         |         | ISO 6974    |  |  |
| Sulphur          | $mg/m^{3}$ (2)                 |       |         | 10      | ISO 6326-5  |  |  |

GRPE-63-21e.doc page 11 / 30

| content     |                |      |      |      |  |
|-------------|----------------|------|------|------|--|
| Wobbe Index | $MJ/m^{3}$ (3) | 48,2 | 47,2 | 49,2 |  |
| (net)       |                |      |      |      |  |

<sup>(1)</sup> Inerts (different from  $N_2$ ) +  $C_2$  +  $C_2$ +.

#### A12. Modifications to Annex 9B (OBD)

Paragraph 4.2. is amended, to read:

#### 4.2. Monitoring requirements

All emission-related components and systems included in an engine system shall be monitored by the OBD system in accordance with the requirements set in Appendix 3 and, in the case of dual-fuel engines or vehicles in section 7 of Annex 15. However, the OBD system is not required to use a unique monitor to detect each malfunction referred to in Appendix 3 and, in the case of dual-fuel engines or vehicles in section 7 of Annex 15.

The OBD system shall also monitor its own components.

The items of Appendix 3 list the systems or components required to be monitored by the OBD system and describes the types of monitoring expected for each of these components or systems (i.e. emission threshold monitoring, performance monitoring, total functional failure monitoring, or component monitoring).

The manufacturer can decide to monitor additional systems and components.

# Paragraph 4.2.1. is amended, to read:

#### 4.2.1. Selection of the monitoring technique

Approval authorities may approve a manufacturer's use of another type of monitoring technique than the one mentioned in Appendix 3 **or, in the case of dual-fuel engines or vehicles in section 7 of Annex 15**. The chosen type of monitoring shall be shown by the manufacturer, to be robust, timely and efficient (i.e. through technical considerations, test results, previous agreements, etc.).

In case a system and/or component is not covered by Appendix 3 or, in the case of dual-fuel engines or vehicles in section 7 of Annex 15, the manufacturer shall submit for approval to the Approval Authority an approach to monitoring. The Approval Authority will approve the chosen type of monitoring and monitoring technique (i.e. emission threshold monitoring, performance monitoring, total functional failure monitoring, or component monitoring) if it has been shown by the

<sup>&</sup>lt;sup>(2)</sup> Value to be determined at 293,2 K (20 °C) and 101,3 kPa.

<sup>(3)</sup> Value to be determined at 273,2 K (0 °C) and 101,3 kPa.

manufacturer, by reference to those detailed in Appendix 3 or, in the case of dualfuel engines or vehicles in section 7 of Annex 15, to be robust, timely and efficient (i.e. through either technical considerations, test results, previous agreements, etc.).

Paragraph 6.3.2.1.2. is amended, to read:

#### 6.3.2.1.2. Performance monitoring

At the request of the manufacturer and with the agreement of the Approval Authority, in the case of performance monitoring, the OTL may be exceeded by more than 20 per cent. Such request shall be justified on a case by case basis.

In the case when the performance monitoring of an abnormality of the gaseous fuel consumption of a dual-fuel engine or vehicle is required by Annex 15 of this Regulation, a deteriorated component is qualified without reference to the OTL.

Section 2 of Item 2 to the technical compliance report in Appendix 4 is amended, to read:

**Monitoring** 

The monitors comply with the requirements of paragraph section 4.2. of this annex

GRPE-63-21e.doc page 13 / 30

#### A13. Introduction of a new Annex 15

A new Annex 15 is introduced, to read:

#### Annex 15

# TECHNICAL REQUIREMENTS FOR DIESEL-GAS DUAL-FUEL ENGINES AND VEHICLES

#### 1. SCOPE

This annex shall apply to dual-fuel engines and dual-fuel vehicles.

#### 2. DEFINITIONS AND ABBREVIATIONS

# 2.1. "Gas Energy Ratio (GER)"

means in case of a dual-fuel engine the ratio (expressed as a percentage) of the energy content of the gaseous fuel<sup>2</sup> over the energy content of both fuels (diesel and gaseous).

# 2.2. "Average gas ratio"

means the average gas energy ratio calculated over a specific operating sequence.

# 2.3. "Heavy-Duty Dual-Fuel (HDDF) Type 1A engine"

means a dual-fuel engine

- that operates over the hot part of the WHTC test-cycle with an average gas ratio that is not lower than 90% (GER<sub>WHTC</sub>  $\geq$  90%), and
- that does not idle using exclusively diesel fuel, and
- that has no diesel mode

#### 2.4. "Heavy-Duty Dual-Fuel (HDDF) Type 1B engine"

means a Dual-Fuel engine

- that operates over the hot part of the WHTC test-cycle with an average gas ratio that is not lower than 90% (GER<sub>WHTC</sub>  $\geq$  90%), and
- that does not idle using exclusively diesel fuel in dual-fuel mode, and
- that has a diesel mode.

# 2.5. "Heavy-Duty Dual-Fuel (HDDF) Type 2A engine"

means a Dual-Fuel engine

- that operates over the hot part of the WHTC test-cycle with an average gas ratio between 10% and 90% ( $10\% < GER_{WHTC} < 90\%$ ) and
- that has no diesel mode

or

\_

<sup>&</sup>lt;sup>2</sup> based on the lower heating value

- that operates over the hot part of the WHTC test-cycle with an average gas ratio that is not lower than 90% (GER<sub>WHTC</sub>  $\geq$  90%), but
- that idles using exclusively diesel fuel, and
- that has no diesel mode.

# 2.6. "Heavy-Duty Dual-Fuel (HDDF) Type 2B engine"

means a Dual-Fuel engine

- that operates over the hot part of the WHTC test-cycle with an average gas ratio between 10% and 90% ( $10\% < GER_{WHTC} < 90\%$ ) and
- that has a diesel mode

or

- that operates over the hot part of the WHTC test-cycle with an average gas ratio that is not lower than 90% (GER<sub>WHTC</sub>  $\geq$  90%), but
- that can idle using exclusively diesel fuel in dual-fuel mode, and
- that has a diesel mode

# 2.7. "Heavy-Duty Dual-Fuel (HDDF) Type 3B engine" 3

means a dual-fuel engine

- that operates over the hot part of the WHTC test-cycle with an average gas ratio that does not exceed 10% ( $GER_{WHTC} \le 10\%$ ) and
- that has a diesel mode.

# 3. DUAL-FUEL SPECIFIC ADDITIONAL APPROVAL REQUIREMENTS

# 3.1. <u>Dual-fuel-engine family</u>

# 3.1.1. Criteria for belonging to a dual-fuel engine family

All engines within a dual-fuel engine family shall

- belong to the same type of dual-fuel engines defined in paragraph 2 of this Annex<sup>4</sup>, and
- operate with the same types of fuel or when appropriate with fuels declared according to this Regulation as being of the same range(s).

All engines within a dual-fuel engine family shall meet the criteria defined by this Regulation for belonging to a compression ignition engine family.

The difference between the highest and the lowest  $GER_{WHTC}$  ( i.e. the highest  $GER_{WHTC}$  minus the lowest  $GER_{WHTC}$ ) within a dual-fuel engine family shall not exceed 30%.

# 3.1.2. Selection of the parent engine

The parent engine of a dual-fuel engine family shall be selected according to the criteria defined by this Regulation for selecting the parent engine of a compression ignition engine family.

GRPE-63-21e.doc page 15 / 30

<sup>&</sup>lt;sup>3</sup> HDDF Type 3A are neither defined nor allowed by this Regulation

For example HDDF Type 1A, or HDDF Type 2B, or etc...

- 4. GENERAL REQUIREMENTS
- 4.1. Operating modes of dual-fuel engines and vehicles
- 4.1.1. Conditions for a dual-fuel engine to operate in diesel mode

A dual-fuel engine may only operate in diesel mode if, when operating in diesel mode, it has been certified according to all the requirements of this Regulation concerning diesel engines.

When a dual-fuel engine is developed from an already certified diesel engine, then re-certification is required in the diesel mode

- 4.1.2. Conditions for a HDDF engine to idle using diesel fuel exclusively
- 4.1.2.1. HDDF Type 1A engines shall not idle using diesel fuel exclusively except under the conditions defined in section 4.1.3. of this Annex for warm-up and start
- 4.1.2.2. HDDF Type 1B engines shall not idle using diesel fuel exclusively in dual-fuel mode.
- 4.1.2.3. HDDF Types 2A, 2B, and 3B engines may idle using diesel fuel exclusively
- 4.1.3. Conditions for a HDDF engine to warm-up or start using diesel fuel solely
- 4.1.3.1. A Type 1B, type 2B, or Type3B dual-fuel engine may warm-up or start using diesel fuel solely. However, in that case, it shall operate in diesel mode.
- 4.1.3.2. A Type 1A or Type 2A dual-fuel engine may warm-up or start using diesel fuel solely. However, in that case, the strategy shall be declared as an AES and the following additional requirements shall be met:
- 4.1.3.2.1. The strategy shall cease to be active when the coolant temperature has reached a temperature of 343 K (70 °C), or within 15 minutes after it has been activated, whichever occurs first, and
- 4.1.3.2.2. The service mode shall be activated while the strategy is active
- 4.2. Service mode
- 4.2.1. Conditions for dual-fuel engines and vehicles to operate in service mode When its engine is operating in service mode, a dual-fuel vehicle is subject to an operability restriction and is temporarily exempted from complying with the requirements related to exhaust emissions, OBD, and NO<sub>x</sub> control described in this Regulation.
- 4.2.2. Operability restriction in service mode

The operability restriction applicable to dual-fuel vehicles when they operate in service mode is the one activated by the "severe inducement system" specified in Annex 11 to this Regulation.

The operability restriction shall not be deactivated by either the activation or deactivation of the warning and inducement systems specified in Annex 11 to this Regulation,.

The activation and the deactivation of the service mode shall not activate or deactivate the warning and inducement systems specified in Annex 11 to this Regulation

#### 4.2.2.1. Activation of the operability restriction

The operability restriction shall be automatically activated when the service mode is activated.

In the case where the service mode is activated because of a malfunction of the gas supply system according to paragraph 7.2. or because of an abnormality of gas consumption according to paragraph 7.3, the operability restriction shall become active after the next time the vehicle is stationary or within 30 minutes after the Service mode is activated, whichever comes first.

In the case where the service mode is activated because of an empty gas tank, the operability restriction shall become active as soon as the service mode is activated.

# 4.2.2.2. Deactivation of the operability restriction

The operability restriction system shall be deactivated when the vehicle does not operate in service mode any more.

#### 4.2.3. Unavailability of gaseous fuel when operating in a dual-fuel mode

Upon detection of an empty gaseous fuel tank, or of a malfunctioning gas supply system according to paragraph 7.2 of this Annex, or of an abnormality of gas consumption in dual-fuel mode according to paragraph 7.3 of this Annex,

- dual-fuel engines of Types 1A and 2A shall activate the service mode
- dual-fuel engines of Types 1B, 2B, and 3B shall operate in diesel mode

# 4.2.3.1. Unavailability of gaseous fuel – empty gaseous tank

In the case of an empty gaseous fuel tank, the service mode or, as appropriate according to paragraph 4.2.3., the diesel mode shall be activated as soon as the engine system has detected that the tank is empty.

When the gas availability in the tank has reached again the level that justified the activation of the empty tank warning system specified in paragraph 4.3.2, the service mode may be deactivated, or, when appropriate, the dual-fuel mode again be activated

#### 4.2.3.2. Unavailability of gaseous fuel – malfunctioning gas supply

GRPE-63-21e.doc page 17 / 30

In the case of a malfunctioning gas supply system according to paragraph 7.2 of this Annex, the service mode or, as appropriate according to paragraph 4.2.3., the diesel mode shall be activated when the DTC relevant to that malfunction has the confirmed and active status.

As soon as the diagnostic system concludes that the malfunction is no longer present or when the information, including DTCs relative to the failures, justifying its activation is erased by a scan tool, the service mode may be deactivated, or, when appropriate, the dual-fuel mode again be activated

- 4.2.3.2.1. If the counter associated with a malfunctioning gas supply system is not at zero, and is consequently indicating that the monitor has detected a situation when the malfunction may have occurred for a second or subsequent time, the service mode or, as appropriate, the diesel mode shall be activated when the DTC has the status "potential".
- 4.2.3.3. Unavailability of gaseous fuel abnormality of gas consumption

In case of an abnormality of gas consumption in dual-fuel mode according to paragraph 7.3 of this Annex, the service mode or, as appropriate according to paragraph 4.2.3., the diesel mode shall be activated when the DTC relevant to that malfunction has got the potential status.

As soon as the diagnostic system concludes that the malfunction is no longer present or when the information, including DTCs relative to the failures, justifying its activation is erased by a scan tool, the service mode may be deactivated, or, when appropriate, the dual-fuel mode again be activated

#### 4.3. Dual-fuel indicators

#### 4.3.1. Dual-fuel operating mode indicator

Dual-fuel engines and vehicles shall provide to the driver a visual indication of the mode under which the engine operates (dual-fuel mode, diesel mode, or service mode).

The characteristics and the location of this indicator are left to the decision of the manufacturer and may be part of an already existing visual indication system.

This indicator may be completed by a message display. The system used for displaying the messages referred to in this point may be the same as the ones used for OBD, correct operation of NO<sub>x</sub> control measures, or other maintenance purposes.

The visual element of the dual-fuel operating mode indicator shall not be the same as the one used for the purposes of OBD (that is, the MI – malfunction indicator), for the purpose of ensuring the correct operation of  $NO_x$  control measures, or for other engine maintenance purposes.

Safety alerts always have display priority over the operating mode indication.

- 4.3.1.1. The dual-fuel mode indicator shall be set to service mode as soon as the service mode is activated (i.e. before it becomes actually active) and the indication shall remain as long as the service mode is active.
- 4.3.1.2. The dual-fuel mode indicator shall be set for at least one minute on dual-fuel mode or diesel mode as soon as the engine operates on dual-fuel or on diesel mode. This indication is required at key-on during at least 1 minute. The indication shall also be given upon driver's request.
- 4.3.2. Empty gaseous fuel tank warning system (dual-fuel warning system)

A dual-fuel vehicle shall be equipped with a dual-fuel warning system that alerts the driver that the gaseous fuel tank will soon become empty.

The dual-fuel warning system shall remain active until the tank is refuelled to a level above which the warning system is activated.

The dual-fuel warning system may be temporarily interrupted by other warning signals providing important safety-related messages.

It shall not be possible to turn off the dual-fuel warning system by means of a scantool as long as the cause of the warning activation has not been rectified.

# 4.3.2.1. Characteristics of the dual-fuel warning system

The dual-fuel warning system shall consist of a visual alert system (icon, pictogram, etc...) left to the choice of the manufacturer.

It may include, at the choice of the manufacturer, an audible component. In that case, the cancelling of that component by the driver is permitted

The visual element of the dual-fuel warning system shall not be the same as the one used for the OBD system (that is, the MI – malfunction indicator), for the purpose of ensuring the correct operation of  $NO_x$  control measures, or for other engine maintenance purposes.

In addition the dual-fuel warning system may display short messages, including messages indicating clearly the remaining distance or time before the activation of the operability restriction.

The system used for displaying the messages referred to in this paragraph may be the same as the one used for displaying additional OBD messages, messages related to correct operation of NOx control measures, or messages for other maintenance purposes.

A facility to permit the driver to dim the visual alarms provided by the warning system may be provided on vehicles for use by the rescue services or on vehicles designed and constructed for use by the armed services, civil defense, fire services and forces responsible for maintaining public order.

#### 4.4. Malfunctioning gas supply counter

GRPE-63-21e.doc page 19 / 30

The system shall contain a counter to record the number of hours during which the engine has been operated while the system has detected a malfunctioning gas supply system according to paragraph 7.2 of this Annex

- 4.4.1. The activation and deactivation criteria and mechanisms of the counter shall comply with the specifications of Appendix 2 of this Annex.
- 4.4.2. It is not required to have a counter as specified in paragraph 4.4., when the manufacturer can demonstrate to the approval authority (e.g. by means of a strategy description, experimental elements, etc...) that the dual-fuel engine automatically switches to diesel mode in the case when the malfunction is detected
- 4.5. <u>Demonstration of the dual-fuel indicators and operability restriction</u>

As part of the application for type-approval under this Regulation, the manufacturer shall demonstrate the operation of dual-fuel indicators and of the operability restriction in accordance with the provisions of Appendix 3

- 4.6. <u>Retrievable torque</u>
- 4.6.1. Retrievable torque when a dual-fuel engine operates in dual-duel mode

When a dual-fuel engine operates in dual-fuel mode,

- (l) the reference torque curve retrievable according to the requirements related to data stream information specified in Annex 9B and referred to by Annex 8 to this Regulation shall be the one obtained according to Annex 4 to this Regulation when that engine is tested on an engine test bench in the dual-fuel mode
- (m) the recorded actual torques (indicated torque and friction torque) shall be the result of the dual-fuel combustion and not the one obtained when operating with diesel fuel exclusively.
- 4.6.2. Retrievable torque when an dual-fuel engine operates in diesel mode

When a dual-fuel engine operates in diesel mode, the reference torque curve retrievable according to the requirements related to data stream information specified in Annex 9B and referred to by Annex 8 to this Regulation shall be the one obtained according to Annex 4 to this Regulation when the engine is tested on an engine test bench in diesel mode

4.7. Requirements to limit Off-Cycle Emissions (OCE) and in-use emissions

Dual-fuel engines shall be subject to the requirements of Annex 10 of this Regulation, whether operating in dual-fuel mode or in the case of Type1B, Type 2B, and Type 3B in diesel mode.

- 4.7.1. PEMS tests at certification
  - The PEMS demonstration test at type-approval required in Annex 10 of this Regulation shall be performed by testing the parent engine of a dual-fuel engine family when operating in dual-fuel mode.
- 4.7.1.1. In the case of Type 1B, Type2B, and Type3B dual-fuel engines, an additional PEMS test shall be performed in diesel mode on the same engine and vehicle immediately after of before the PEMS demonstration test performed in dual-fuel mode. In that case certification can only be granted if both the PEMS demonstration test in dual-fuel mode and the PEMS demonstration test in diesel mode have concluded to a pass.
- 4.7.2. Additional requirements
- 4.7.2.1. Adaptive strategies of a dual-fuel engine are allowed provided:
  - The engine always remains in the HDDF type (that is Type 1A, Type 2B, etc...) that has been declared for type-approval, and
  - In case of a Type 2 engine, the resulting difference between the highest and the lowest GER<sub>WHTC</sub> within the family shall never exceed the percentage specified in paragraph 3.1.1. of this Annex and
  - These strategies are declared and satisfy the requirements of Annex 10 of this Regulation
- 5. PERFORMANCE REQUIREMENTS
- 5.1. Emission limits applicable to HDDF Type 1A and Type 1B engines
- 5.1.1. The emission limits applicable to HDDF Type 1A engines and HDDF Type 1B engines operating in dual-fuel mode are those defined for PI engines in paragraph 5.3. of this Regulation
- 5.1.2. The emission limits applicable to HDDF Type 1B engines operating in diesel mode are those defined for CI engines in paragraph 5.3. of this Regulation
- 5.2. Emission limits applicable to HDDF Type 2A and Type 2B engines
- 5.2.1. Emission limits applicable over the WHSC test-cycle
- 5.2.1.1. For HDDF Type 2A and Type 2B engines, the exhaust emission limits (incl. the PM number limit) over the WHSC test-cycle applicable to HDDF Type 2A engines and HDDF Type 2B engines operating in dual-fuel mode are those applicable to CI engines over the WHSC test-cycle and defined in the table of paragraph 5.3. of this Regulation

GRPE-63-21e.doc page 21 / 30

- 5.2.1.2. The emission limits (incl. the PM number limit) over the WHSC test-cycle applicable to HDDF Type 2B engines operating in diesel mode are those defined for CI engines in paragraph 5.3. of this Regulation
- 5.2.2. Emission limits applicable over the WHTC test-cycle
- 5.2.2.1. Emission limits for CO, NO<sub>x</sub>, NH<sub>3</sub>, and PM mass

The CO, NO<sub>x</sub>, NH<sub>3</sub>, and PM mass emission limits over the WHTC test-cycle applicable to HDDF Type 2A engines and HDDF Type 2B engines operating in dual-fuel mode are those applicable to both CI and PI engines over the WHTC test-cycle and defined in paragraph 5.3. of this Regulation

## 5.2.2.2. Emission limits for Hydrocarbons

# 5.2.2.2.1. NG engines

The THC, NMHC, and CH4 emission limits over the WHTC test-cycle applicable to HDDF Type 2A engines and HDDF Type 2B engines operating with Natural Gas in dual-fuel mode are calculated from those applicable to CI and PI engines over the WHTC test-cycle and defined in paragraph 5.3. of this Regulation. The calculation procedure is specified in paragraph 5.3. of this Annex.

# 5.2.2.2. LPG engines

The THC emission limits over the WHTC test-cycle applicable to HDDF Type 2A engines and HDDF Type 2B engines operating with LPG in dual-fuel mode are those applicable to CI engines over the WHTC test-cycle and defined in paragraph 5.3. of this Regulation.

#### 5.2.2.3. Emission limits for PM number

- 5.2.2.3.1. The PM number limit over the WHTC test-cycle applicable to HDDF Type 2A engines and HDDF Type 2B engines operating in dual-fuel mode are those applicable to CI engines over the WHTC test-cycle and defined in paragraph 5.3. of this Regulation. In the case a PM number limit applicable to PI engines over the WHTC test-cycle would be defined in paragraph 5.3. of this Regulation, then the requirements of paragraph 5.2.2. of this annex shall apply for calculating the limit applicable to HDDF Type 2A engines and HDDF Type 2B engines over that cycle.
- 5.2.2.3.2. The emission limits (incl. the PM number limit) over the WHTC test-cycle applicable to HDDF Type 2B engines operating in diesel mode are those defined for CI engines in paragraph 5.3. of this Regulation
- 5.2.3. HydroCarbon limits (in mg/kWh) applicable to HDDF Type 2A engines and to HDDF Type 2B engines operating in dual-fuel mode during the WHTC test cycle.

The following calculation procedure applies for HDDF Type2A and HDDF Type 2B engines tested in the WHTC cycle while operating in dual-fuel mode :

- Calculate the average gas ratio GER<sub>WHTC</sub> over the hot part of the WHTC test cycle
- Calculate a corresponding  $THC_{GER}$  in mg/kWh using the following formula:  $THC_{GER} = NMHC_{PI} + (CH4_{PI} * GER_{WHTC})$
- Determine the applicable THC limit in mg/kWh using the following method: If  $THC_{GER} \le CH4_{PI}$ , then
  - a) THC limit value =  $THC_{GER}$  and
  - b) No applicable CH<sub>4</sub> and NMHC limit value

If  $THC_{GER} > CH4_{PI}$ , then

- a) No applicable THC limit value; and
- b) Both the NMHC<sub>PI</sub> and CH4<sub>PI</sub> limit values are applicable.

## In this procedure,

- NMHC<sub>PI</sub> is the NMHC emission limit over the WHTC test-cycle and made applicable to PI engine by paragraph 5.3 of this Regulation
- CH4<sub>PI</sub> is the CH<sub>4</sub> emission limit over the WHTC test-cycle and applicable to PI engine by paragraph 5.3 of this Regulation

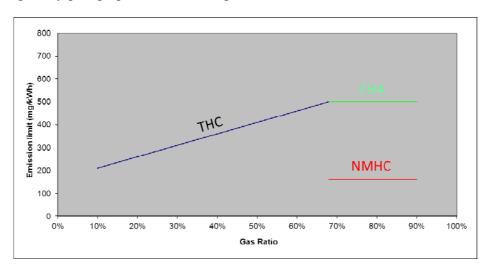



figure 1: illustration of the HC limits in the case of a HDDF type2 engine operating in dual-fuel mode during the WHTC cycle (natural gas dual-fuel engines)

5.2.4. PM number limit (in #/kWh) applicable to HDDF Type 2A engines and to HDDF Type 2B engines operating in dual-fuel mode during the WHTC test cycle.

In the case a PM number limit applicable to PI engines over the WHTC test-cycle would be defined in paragraph 5.3. of this Regulation, the following calculation procedure shall apply to HDDF Type 1A engines, to HDDF Type 1B engines, to HDDF Type 2A engines, to HDDF Type 2A engines, to HDDF Type 2B engines tested in the WHTC cycle while operating in dual-fuel mode:

 Calculate the average gas ratio GER<sub>WHTC</sub> over the hot part of the WHTC test cycle, then

GRPE-63-21e.doc page 23 / 30

 Calculate the PM number limit values PN limit<sub>WHTC</sub> in #/kWh applicable over the WHTC test-cycle using the following formula (linear interpolation between the CI and PI PM number limit values):

 $\begin{array}{lll} PN & limit_{WHTC} = PN & limit_{Cl/WHTC} + (PN & limit_{Pl/WHTC} - PN & limit_{Cl/WHTC}) * \\ GER_{WHTC} & \end{array}$ 

#### where

PN  $limit_{PI/WHTC}$  is the PM number limit applicable to PI engines over the WHTC test cycle

PN  $limit_{\text{CI/WHTC}}$  is the PM number limit applicable to CI engines over the WHTC test cycle

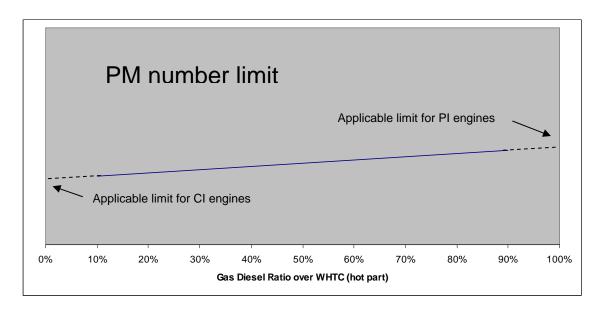



figure 2: illustration of the PN limits in the case of a HDDF type2 engine operating in dualfuel mode during the WHTC cycle

5.3. Emission limits applicable to HDDF Type 3B engines operating in dual-fuel mode The emissions limits applicable to HDDF Type 3B engines whether operating in dual-fuel mode or in diesel mode are the exhaust emission limits applicable to CI engines.

#### 5.4. Conformity factors

Principally, the emission limit applicable for applying the conformity factor used when performing a PEMS test, whether a PEMS test at certification or a PEMS test when checking and demonstrating the conformity of in-service engines and vehicles, shall be determined on the basis of the actual GER calculated from the fuel consumption measured over the on-road test.

However, in absence of a robust way to measure the gas or the diesel fuel consumption, the manufacturer is allowed to use the  $GER_{WHTC}$  determined on the hot part of the WHTC

# 6. DEMONSTRATION REQUIREMENTS

# 6.1. <u>Dual-fuel engines shall be subject to the laboratory tests specified in table 1</u>

Table 1: Laboratory tests to be performed by a HDDF engine

|            | Type 1A                 | Type 1B                 | Type 2A                      | Type 2B                      | Type 3B                |
|------------|-------------------------|-------------------------|------------------------------|------------------------------|------------------------|
| WHTC       | NMHC; CH <sub>4</sub> ; | Dual-fuel mode:         | THC; NMHC; CH <sub>4</sub> ; | <u>Dual-fuel mode:</u>       | THC;                   |
|            | CO; NOx;                | NMHC; CH <sub>4</sub> ; | CO; NOx;                     | THC; NMHC; CH <sub>4</sub> ; | CO; NOx;               |
|            | PM; PN;NH <sub>3</sub>  | CO; NOx;                | PM; PN;NH <sub>3</sub>       | CO; NOx;                     | PM; PN;NH <sub>3</sub> |
|            |                         | PM; PN;NH <sub>3</sub>  |                              | PM; PN;NH <sub>3</sub>       |                        |
|            |                         |                         |                              |                              |                        |
|            |                         | Diesel mode:            |                              | Diesel mode:                 |                        |
|            |                         | THC;                    |                              | THC;                         |                        |
|            |                         | CO; NOx;                |                              | CO; NOx;                     |                        |
|            |                         | PM; PN;NH <sub>3</sub>  |                              | PM; PN;NH <sub>3</sub>       |                        |
| WHSC       | - no test -             | Dual-fuel mode:         | NMHC;                        | <u>Dual-fuel mode:</u>       | THC;                   |
|            |                         | - no test -             | CO; NOx;                     | NMHC;                        | CO; NOx;               |
|            |                         |                         | PM; PN;NH <sub>3</sub>       | CO; NOx;                     | PM; PN;NH <sub>3</sub> |
|            |                         |                         |                              | PM; PN;NH <sub>3</sub>       |                        |
|            |                         |                         |                              |                              |                        |
|            |                         | <u>Diesel mode:</u>     |                              | <u>Diesel mode:</u>          |                        |
|            |                         | THC;                    |                              | THC;                         |                        |
|            |                         | CO; NOx;                |                              | CO; NOx;                     |                        |
|            |                         | PM; PN;NH <sub>3</sub>  |                              | PM; PN;NH <sub>3</sub>       |                        |
| WNTE       | - no test -             | <u>Dual-fuel mode:</u>  | [HC];                        | <u>Dual-fuel mode:</u>       | THC;                   |
| laboratory |                         | - no test -             | CO; NOx;                     | [HC];                        | CO; NOx;               |
| test       |                         |                         | PM                           | CO; NOx;                     | PM                     |
|            |                         |                         |                              | PM                           |                        |
|            |                         |                         |                              |                              |                        |
|            |                         | <u>Diesel mode:</u>     |                              | <u>Diesel mode:</u>          |                        |
|            |                         | THC;                    |                              | THC;                         |                        |
|            |                         | CO; NOx;                |                              | CO; NOx;                     |                        |
|            |                         | PM                      |                              | PM                           |                        |

# 6.2. <u>Demonstrations in case of installation of type-approved HDDF engines</u>

A demonstration of the correct installation on a vehicle of a dual-fuel engine that is type-approved as separate technical unit according to the requirements of this Regulation shall be done on the basis of appropriate elements of design, results of verification tests, etc. It shall address the conformity of the following elements to the requirements of this annex:

- (a) The dual-fuel indicators and warnings as specified in this Annex (pictogram, activation schemes, etc.);
- (b) The fuel storage system.
- (c) The performance of the vehicle in service mode

GRPE-63-21e.doc page 25 / 30

Correct indicator illumination and warning system activation will be checked. But any check shall not force dismounting the engine system (e.g. an electric disconnection may be selected).

# 6.3. <u>Demonstration requirements in case of a Type2 engine</u>

The manufacturer shall present the approval authority with evidence showing that the GER<sub>WHTC</sub> span of all members of the dual-fuel engine family remains within the percentage specified in paragraph 3.1.1 of this Annex (for example, through algorithms, functional analyses, calculations, simulations, results of previous tests, etc ...).

## 7. OBD REQUIREMENTS

# 7.1. <u>General OBD requirements</u>

All dual-fuel engines and vehicles shall comply with the requirements specified in Annex 9A to this regulation and applicable to diesel engines, independent whether operating in dual-fuel or diesel mode.

7.1.1. Additional general OBD requirements in case of Type 1B, type 2B, and Type 3B dual-fuel engines and vehicles.

[To be developed]

## 7.2. Monitoring of the gas supply system

HDDF engines and vehicles shall monitor the gas supply system within the engine system (incl. the signals coming from outside of the engine system) according to the specifications of item1 in appendix 3 of Annex 9B to this regulation – component monitoring.

# 7.3. <u>Monitoring of the gaseous fuel consumption</u>

Type 2A and Type 2B dual-fuel vehicles shall include a means of determining gas fuel consumption and providing off-board access to consumption information. Abnormality of the gaseous fuel consumption (e.g. a deviation of 50% of the normal gaseous fuel consumption) shall be monitored – performance monitoring.

The maximum detection period for insufficient gaseous fuel consumption is 48 hours of operation in the dual-fuel mode.

This monitor shall run continuously and not be subject to the "IUPR" requirements

#### 7.4. OBD Deficiencies

The deficiency rules specified in Annex 9B to this Regulation and applicable to diesel engines shall apply to dual-fuel engines.

A deficiency that is present both in diesel mode and in dual-fuel mode shall not be counted for each mode separately.

#### 7.5. Erasing of failure information by means of a scan-tool

- 7.5.1. Erasing of information by means of a scan tool, including DTCs relative to the malfunctions considered in this Annex shall be performed in accordance with Annex 9B.
- 7.5.2. The erasing of failure information shall only be possible under "engine-off" conditions
- 7.5.3. When failure information related to the gas supply system as specified in section 7.2 of this Annex, including the DTC, is erased, the counter associated with this failure shall not be erased.
- 8. REQUIREMENTS TO ENSURE THE CORRECT OPERATION OF NO<sub>X</sub> CONTROL MEASURES

Annex 11 (on correct operation of NO<sub>x</sub> control measures) to this regulation shall apply to HDDF engines and vehicles, whether operating in dual-fuel or diesel mode.

In case of HDDF Type 1B, of HDDF Type 2B, and of HDDF Type 3B, the torque considered to apply low level inducement defined in Annex 11 shall be the lowest of the torques obtained in diesel mode and in dual-fuel mode.

9. CONFORMITY OF IN-SERVICE ENGINES OR VEHICLES/ENGINES

The conformity of in-service dual-fuel engines and vehicles shall be performed according to the requirements specified in Annex 8 of this Regulation. The PEMS tests shall be performed in dual-fuel mode.

9.1. In the case of Type 1B, Type 2B, and Type 3B dual-fuel engines, an additional PEMS test shall be performed in Diesel mode on the same engine and vehicle immediately after, or before, a PEMS test is performed in dual-fuel mode.

In that case the pass or fail decision of the lot considered in the statistical procedure specified in annex 8 of this Regulation shall be based on the following:

- a pass decision is reached for an individual vehicle if both the PEMS test in dualfuel mode and the PEMS test in Diesel mode have concluded to a pass.
- a fail decision is reached for an individual vehicle if either the PEMS test in dualfuel mode or the PEMS test in Diesel mode has concluded to a fail.
- 10. ADDITIONAL TEST PROCEDURES
- 10.1. Additional emission test procedure requirements for dual-fuel engines
- 10.1.1. Dual-fuel engines shall comply with the requirements of appendix 4 to this Annex in addition to the requirements of this Regulation (incl. Annex 4) when performing an emission test.

GRPE-63-21e.doc page 27 / 30

- 10.2. Additional PEMS emission test procedure requirements for dual-fuel engines
- 10.2.1. When subject to a PEMS test, dual-fuel engines shall comply with the requirements of appendix 5 to this Annex in addition to the other PEMS requirements of this Regulation.
- 10.2.2. Torque correction [To be documented]

# 11. DOCUMENTATION REQUIREMENTS

- 11.1. <u>Documentation for purpose of type-approval</u> [To be documented]
- 11.2. Documentation for installing in a vehicle a type approved HDDF engine

The manufacturer of a dual-fuel engine type-approved as separate technical unit shall include in the installation documents of its engine system the appropriate requirements that will ensure that the vehicle, when used on the road or elsewhere as appropriate, will comply with the requirements of this annex. This documentation shall include but is not limited to:

- (a) the detailed technical requirements, including the provisions ensuring the compatibility with the OBD system of the engine system;
- (b) The verification procedure to be completed.

The existence and the adequacy of such installation requirements may be checked during the approval process of the engine system.

11.2.1. In the case when the vehicle manufacturer who applies for approval of the installation of the engine system on the vehicle is the same manufacturer who received the type-approval of the dual-fuel engine as separate technical unit, the documentation specified in section 11.2. is not required.

#### 12. APPENDICES

- Appendix 1 Types of HDDF engines and vehicles illustration of the definitions and requirements
- Appendix 2 Activation and deactivation mechanisms of the counter(s), warning system, operability restriction, service mode in case of HDDF engines and vehicles-Description and illustrations
- Appendix 3 Activation of the service mode demonstration requirements
- Appendix 4 Additional emission test procedure requirements for dual-fuel engines
- Appendix 5 Additional PEMS emission test procedure requirements for dual-fuel engines

 ${\bf Appendix} \ {\bf 1}$  Types of HDDF engines and vehicles - illustration of the definitions and main requirements

|            | GER <sub>WHTC</sub> <sup>5</sup> | idle<br>on diesel           | warm-up<br>on diesel         | operation<br>on diesel solely          | Operation in absence of gas | comments                                                             |
|------------|----------------------------------|-----------------------------|------------------------------|----------------------------------------|-----------------------------|----------------------------------------------------------------------|
| Type<br>1A | GER <sub>WHTC</sub> ≥ 90%        | NOT Allowed                 | Allowed only on service mode | Allowed only on service mode           | Service mode                |                                                                      |
| Type<br>1B | GER <sub>WHTC</sub> ≥ 90%        | Allowed only on Diesel mode | Allowed only on Diesel mode  | Allowed only on Diesel & Service modes | Diesel mode                 |                                                                      |
| Type 2A    | 10% < GER <sub>WHTC</sub> < 90%  | Allowed                     | Allowed only on service mode | Allowed only on service mode           | Service mode                | $\begin{array}{c} GER_{WHTC} \! \geq \! 90\% \\ allowed \end{array}$ |
| Type 2B    | 10% < GER <sub>WHTC</sub> < 90%  | Allowed                     | Allowed only on Diesel mode  | Allowed only on Diesel & Service modes | Diesel mode                 | $\begin{array}{c} GER_{WHTC} \! \geq \! 90\% \\ allowed \end{array}$ |
| Type 3A    | NEITHER DEFINED NOR ALLOWED      |                             |                              |                                        |                             |                                                                      |
| Type<br>3B | GER <sub>WHTC</sub> ≤ 10%        | Allowed                     | Allowed only on Diesel mode  | Allowed only on Diesel & Service modes | Diesel mode                 |                                                                      |

GRPE-63-21e.doc page 29 / 30

-

 $<sup>^5</sup>$  This average  $\underline{G}as$   $\underline{E}nergy$   $\underline{R}atio$   $GER_{WHTC}$  is calculated over the hot part of the WHTC test-cycle

# Appendix 2

Activation and deactivation mechanisms of the counter(s), warning system, operability restriction, service mode in case of HDDF engines and vehicles - Description and illustrations

[to be documented]

# Appendix 3

HDDF warning system, operability restriction, service mode
- Demonstration requirements

[to be documented]

# Appendix 4

Additional emission test procedure requirements for dual-fuel engines

[to be documented]

# Appendix 5

Additional PEMS emission test procedure requirements for dual-fuel engines

[to be documented]