

# Update on the WorldSID injury risk curves

on behalf of ISO/WG6 and ACEA-TFD

GRSP WorldSID Informal Group 2nd of March, 2011 Brussels





#### WorldSID 50th injury risk curves: TR12350

- The developement of the WorldSID 50th injury risk curves was performed on behalf of ISO/WG6 and ACEA-TFD and aimed at promoting a **scientific consensus** from biomechanical experts from international institutions, car manufacturers as well as universities regarding the proposed injury risk curves
- The ISO/WG6/TR12350 present the methodology developed as well as the WorldSID 50th injury risk curves





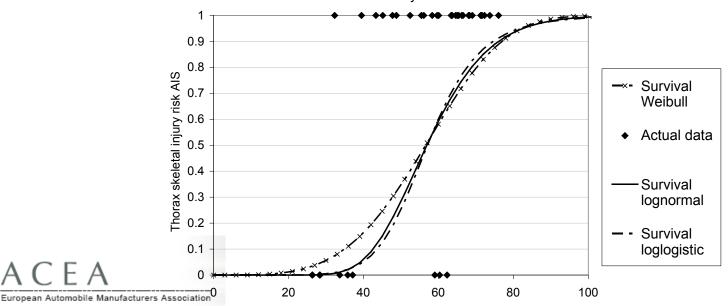
#### WorldSID 50th injury risk curves: TR12350

- The methodology developed includes several steps
- 1. In depth literature review of PMHS data in side impact
- 2. Selection of the appropriate PMHS data to be used in the construction of the injury risk curves
- 3. Scaling of the data to account for the differences of anthropometry between the PMHS and the 50<sup>th</sup> percentile dummy (Based on 2 masses-spring model and on scaling factor from Mertz)
- 4. Adjustment of the scaled data to account for the influence of age on the injuries
- 5. Gathering of the test results for the WorldSID 50<sup>th</sup> percentile
- 6. Construction of the injury risk curves pairing the scaled WorldSID data adjusted to 45 year old with the PMHS injuries, using the statistical methods commonly used in the literature





#### WorldSID 50th injury risk curves: TR12350

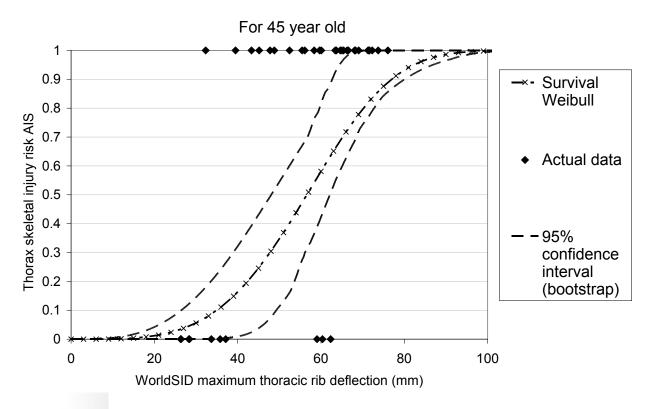

- > Injury risk curves were build:
  - For different body regions (shoulder, thorax, abdomen, pelvis)
  - With several statistical methods because there was no consensus on the method to be used in the literature
  - As a function of commonly used measurements





## WorldSID 50th injury risk curves: under progress

- ➤ Work on the statistical methods within ISO/WG6
  - ➤ Guidelines to build injury risk curves drafted by PDB
  - ➤ Statistical simulations to study the influence of several parameters (theoretical distribution, level of censoring, sample size, distribution of the test sample)
- At the last ISO/WG6 meeting, it was agreed to choose the survival analysis as a basis to build the injury risk curves
  - The process for choosing the more appropriate distribution to be used in survival analysis (weibull, lognormal, loglogistic) is currently evaluated
  - Covariable can be included, such as age

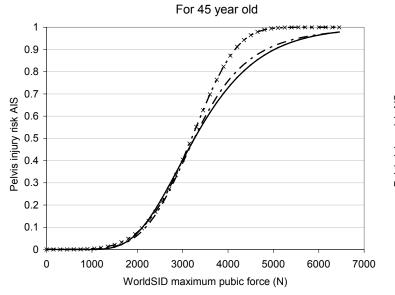


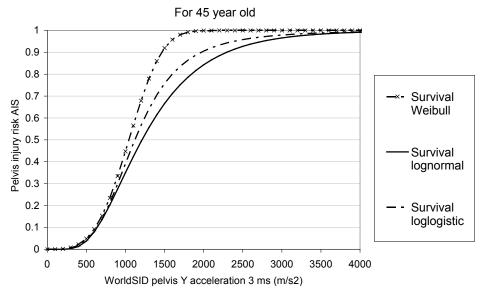





## WorldSID 50th injury risk curves: under progress

- The injury risk curves should be provided with 95% confidence intervals
  - The process for building the confidence intervals is currently evaluated
    - ➤ Could be done with bootstrap method






## WorldSID 50th injury risk curves: under progress

- The WorldSID 50th injury risk curves were built as a function of the commonly used measurements
- Some work is needed to define what are the good injury criteria among those commonly used measurements and/or with additional measurements
  - For example, the pelvis injury risk curves were built as a function of the Y 3 ms pelvis acceleration and of the pubic force > what is the more relevant injury risk curve?
  - For example, measurements from rib eye should be considered if relevant







# WorldSID 5th injury risk curves

- As for the WorldSID 50th, the development of the WorldSID 5th injury risk curves will be performed on behalf of ISO/WG6 and ACEA-TFD and will aim at promoting a scientific consensus from biomechanical experts
- The methodology developed in TR12350 will be applied
- There is no 5th PMHS tests to be used for the construction of the injury risk curves
  - The PMHS samples used to develop the injury risk curves for the WorldSID 50th will be used
- Additional work is needed on the scaling of the test conditions
  - To be discussed among ISO/WG6 and volunteer biomechanical experts
  - ➤ Discussions begun during a webex meeting on the 22nd of February
    - ➤ Agreement for the impactor characteristics for thorax impactor tests (14.7 kg and 120 mm diameter)
    - ➤ More information needed to decide for the sled wall geometry
    - Further steps includes the scaled test conditions for the shoulder and pelvis impactor tests





# WorldSID 5th injury risk curves

- ➤Once the test conditions to be reproduced with the WorldSID 5th are agreed (impact speed, impactor mass, geometry of the impacting surface, measurements required), they will be circulated to ISO/WG6 and to the organizations who are planning to evaluate the WorldSID 5th
- The results of the tests performed in the configurations corresponding to those defined will be used to build the injury risk curves and ISO/WG6/TR12350 will be updated





## Injury risk curves: TR12350

- The process of construction of injury risk curves begun with the selection of the appropriate PMHS data to be used
- Then the scaled dummy responses are paired to PMHS injuries
- Finally the injury risk curves are constructed
- Not all the test configurations were reproduced with the WorldSID 50th percentile
  - Impactor tests: shoulder 19/82, thorax 8/46, abdomen 0/8, pelvis 59/110; Sled tests: 31/58
  - The reliability of the WorldSID 50th injury risk curves could be improved if more PMHS test configurations are reproduced with the dummy
- As for the WorldSID 50th, the more numerous test configurations are reproduced, the more reliable the WorldSID 5th injury risk curves will be

