

APROSYS Car to pole side impact activities

Ton Versmissen TNO The Netherlands

GRSP / PSI meeting / Brussels / March 3rd, 2011

Content

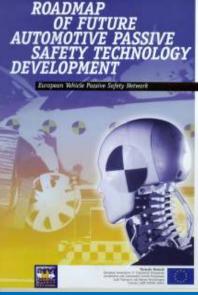
- APROSYS project
- Side impact activities
- Car to pole side impact
 - Full scale test
 - Numerical simulations
 - Main conclusions

Content

- APROSYS project
- Side impact activities
- Car to pole side impact
 - Full scale test
 - Numerical simulations
 - Main conclusions

APROSYS / Main goal

To improve passive safety for all European road users in all relevant accident types and accident severities



APROSYS Motivation

- Need to reduce European road casualty problem
- EUCAR Masterplan 2000: "Safety in road traffic stays a top priority for the automotive industry"
- White Paper for Transport: "50% reduction in number of fatalities in next decade"
- Roadmap of Future Automotive Passive Safety Technology Development (APSN)

Project name: Coordinator:

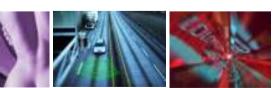
Consortium:

Core group members & sub project leaders: Advanced Protection Systems - APROSYS TNO

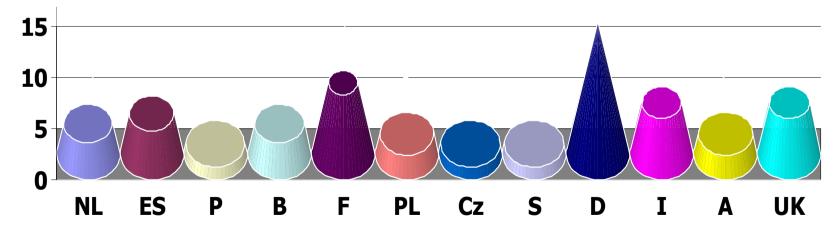
48 partners (OEM, Suppliers, RTDs, Universities)

Daimler, Renault, FIAT, Continental, TNO, CIDAUT, TRL, TUG, INRETS, Altair, Volkswagen, CIC

Starting Date: Ending Date: 01 April 2004 30 March 2009

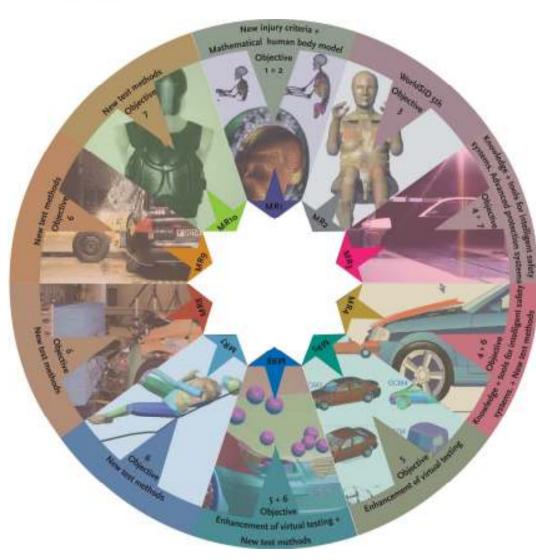

30 MEURO / 18 MEURO

Budget Total / Funding:



Project "Statistics" (at start)

- 47 APROSYS consortium partners
 - 7 car manufacturers (DC, Regienov, PSA, FIAT, VW, Skoda, Toyota-Europe), 11 suppliers (Siemens, Faurecia, etc.), 13 universities and 14 research institutes
- 12 EU countries


- 1. New injury criteria and injury tolerances
- 2. New mathematical models of the human body
- 3. New world-wide harmonized crash dummy
- 4. New knowledge and tools for intelligent safety systems
- 5. Enhancement of virtual testing technology
- 6. New test methods (for advanced safety systems)
- 7. Advanced protection systems

nnovation

MR 1: New human body mathematical models

MR a: WorldSID sth percentile female dummy for side impact

MR 3: Side impact protection system for car occupants

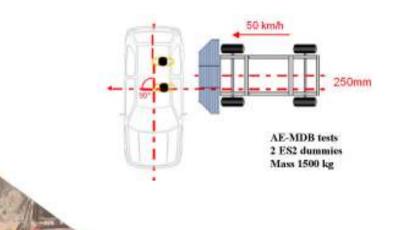
MR 4: Generic assessment methodology for advanced safety systems

MR 5: Generic car mathematical models

MR 6: Virtual testing methodology

MR 7: Test methods for xulnerable road users

MR 8: Full width frontal test for Europe


MR g: New side impact test methods

M讯 103

New protection systems for vulnerable road users

Main Result 9: Advanced side impact test method

Content

- APROSYS project
- Side impact activities
- Car to pole side impact
 - Full scale test
 - Numerical simulations
 - Main conclusions

Side impact / Background

- In Europe ~10.000 car occupant fatalities in side impact crashes annually
- At 2005 ESV conference a 4 part draft test procedure was published by IHRA
 - Car to car test / AE-MDB
 - Car to narrow objects (car to pole)
 - Free motion headform tests
 - Side Out Of Position
- Further development of proposed procedures and evaluation of applicability for Europe

Side impact / Activities

 Multi vehicle lateral crashes AE-MDB development Car to car / AE-MDB tests LCW calibration tests AE-MBD / IIHS barrier comparison ES2/WorldSID 50th/WorldSID 5th Supporting simulation activities 	 Car to narrow object crashes Oblique / perpendicular impacts Euro NCAP <> NPRM 214 Full scale tests / numerical studies Velocity / angle / impact location / pole Effect of ESC (literature review) 	
 Head protection Update of EEVC WG13 protocol FMH tests and feasibility checks Definition of impact angle Selection of impact locations Reproducibility 	 Side Out of position Based on IHRA / TWG proposal Focus on European situation Hybrid-III 3yo, 6yo, SIDIIs Additional tests with CRS 	

Side impact / Main Findings

 Multi vehicle lateral crashes Updated test protocol V3 improvement of V2 V3.9 representative for c2c More severe as ECE R95 ES-2 / WordSID50th/WorldSID 5th Test information available Waiting for injury criteria 	 Car to narrow object crashes Euro NCAP & NPRM 214 possible Preference for perpendicular test Dummy>> oblique loading Oblique possible for harmonization ESC: significant effect on number
 Head protection Updated protocol / flowchart Good reproducibility Evaluation workshop scheduled 	 Side Out of position No need in Europe (yet ?!?) Sub-set TWG scenario's feasible in EU Change to type approval regulation Booster seats included

Content

- APROSYS project
- Side impact activities
- Car to pole side impact
 - Full scale test
 - Numerical simulations
 - Main results
 - Conclusions

Car to pole tests / Introduction

- Full scale tests
 - Feasibility / practicality NPRM 214 car to pole
 - ES-2 / WorldSID 50th
 - Impact location variation
- Simulation study
 - Test parameter variations

Car to pole tests / Test program

			Subaru	
Subaru Legacy	Test S1	Test S2	Test S3	Test S4
 angle/speed impact location dummy project 	75° / 32 km/h NPRM-214 WorldSID 50% APROSYS	90° / 32 km/h Euro NCAP WorldSID 50% APROSYS	75° / 32 km/h NPRM-214 ES-2	90° / 29 km/h Euro NCAP ES-2
Toyota Avensis	Test T1	Test T2	Test T3	Test T4
 angle/speed impact location dummy project 	75° / 32 km/h NPRM-214 ES-2 APROSYS	75° / 32 km/h NPRM 214 ES-2 APROSYS/DOTARS	75° / 32 km/h Euro NCAP ES-2 APROSYS	90° / 29 km/h Euro NCAP ES-2 Euro NCAP

APROSYS

254 ± 6 mm		
Bottom no more than 102 mm above the lowest point of the tires. Top extended above the highest point of the vehicle		
APROSYS / NPRM-214 Euro NCAP / FMVSS-201	32 ± 0.5 km/h 29 ± 0.5	
APROSYS / NPRM-214 Euro NCAP / FMVSS-201	75 ± 3 ° 90 ± 3 °	
APROSYS / NPRM-214	On a reference line on the vehicle were the vehicle side wall intersects with a vertical plane passing the head COG of the seated driver dummy at an angle of 75° from the vehicle's X-axis.	
Euro NCAP / FMVSS-201	On a reference line on the striking side of the vehicle where a transverse vertical plane passes through the COG of the head of the seated dummy.	
± 20 mm	all tests	
According to the Euro NCAP Pole protocol V4.1 April 2004		
WorldSID	According to UMTRI protocol: •ATD_postioning_procedure.PDF •ATD_positioning_templateV4.xls	
Euro NCAP / FMVSS-201	According to Euro NCAP side impact protocol V4.1	
	Bottom no more than 102 m Top extended above the high APROSYS / NPRM-214 Euro NCAP / FMVSS-201 APROSYS / NPRM-214 WorldSID	

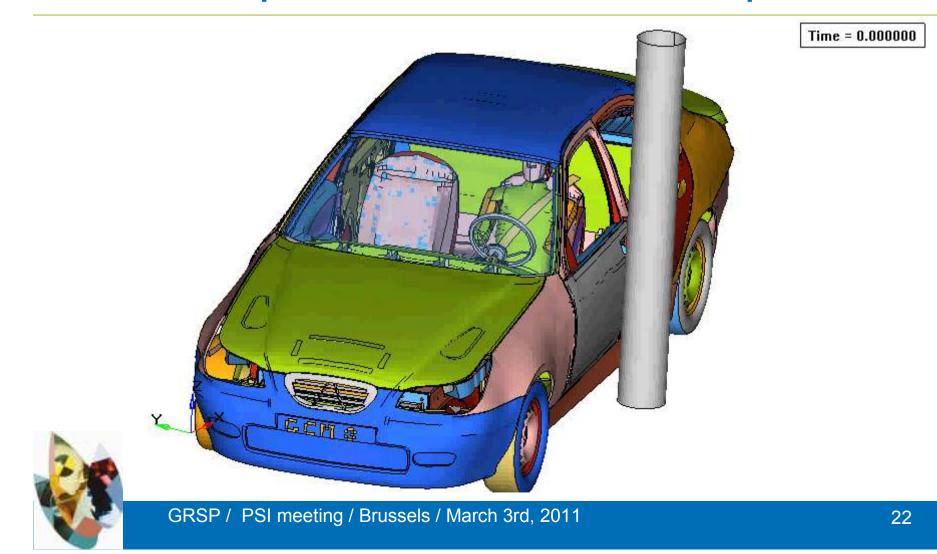
Full scale test set-up (NPRM 214)

Full scale tests / Example (NPRM 214)

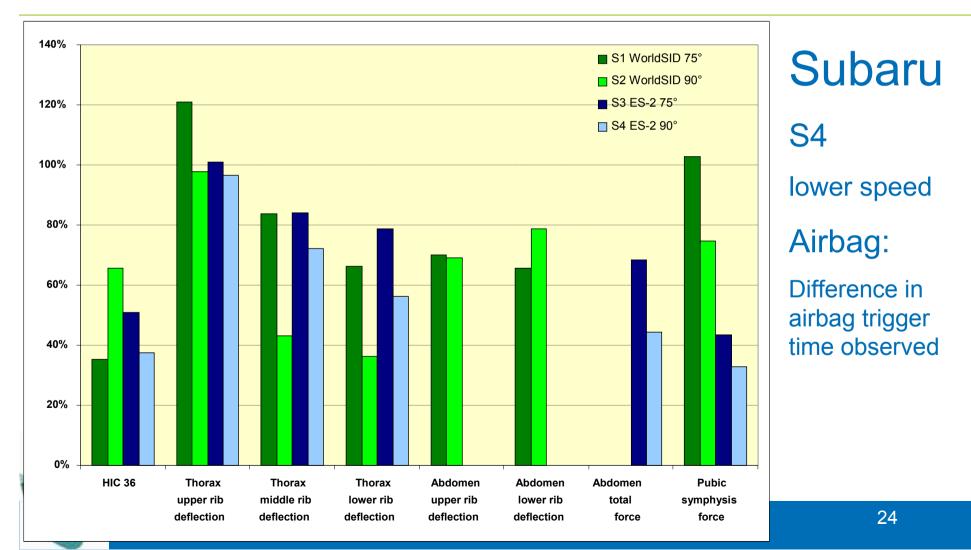
Direction of Travel

ΉC

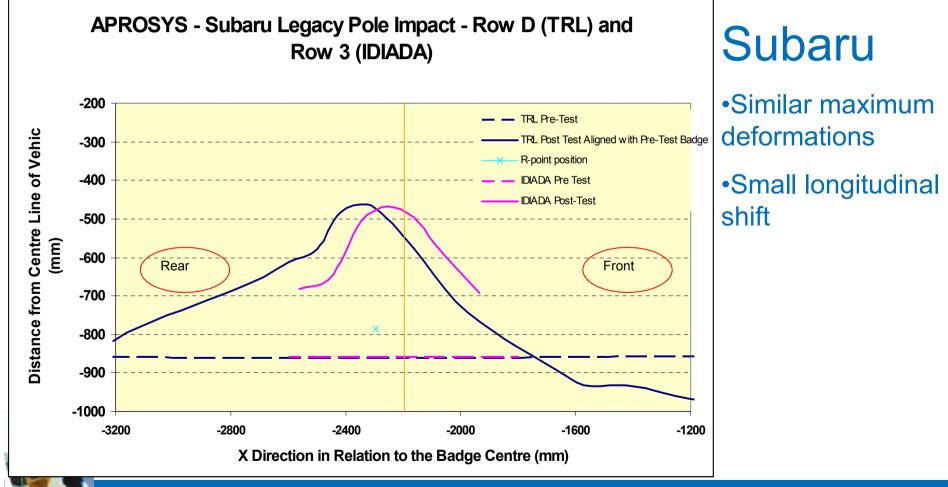
Car to pole / Simulation program

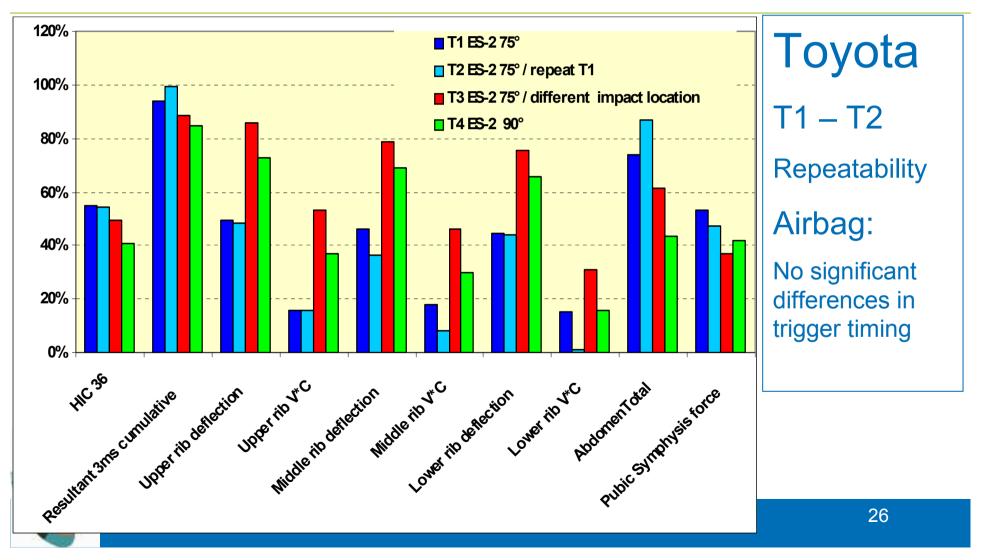

Parameter			
Vehicle model	'Generic' model of a 4-doors pass	senger car (GCM3)	
Impact angles θ [°]	90 (FMVSS-201) / 82.5 / 75 (NPRM-214)		
Test velocities V [km/h]	29 (FMVSS-201) / 32 (NPRM-214) / 36		
Impact point	-100, 0 and 100 mm shifted from s axis	specified, along vehicle for-aft	
Pole diameters Φ [mm]	254 (NPRM-214) / 350 (ISO)	Kan a start a	
Dummy	ES-2 model (EEVC specification)		
		Driver's Side	

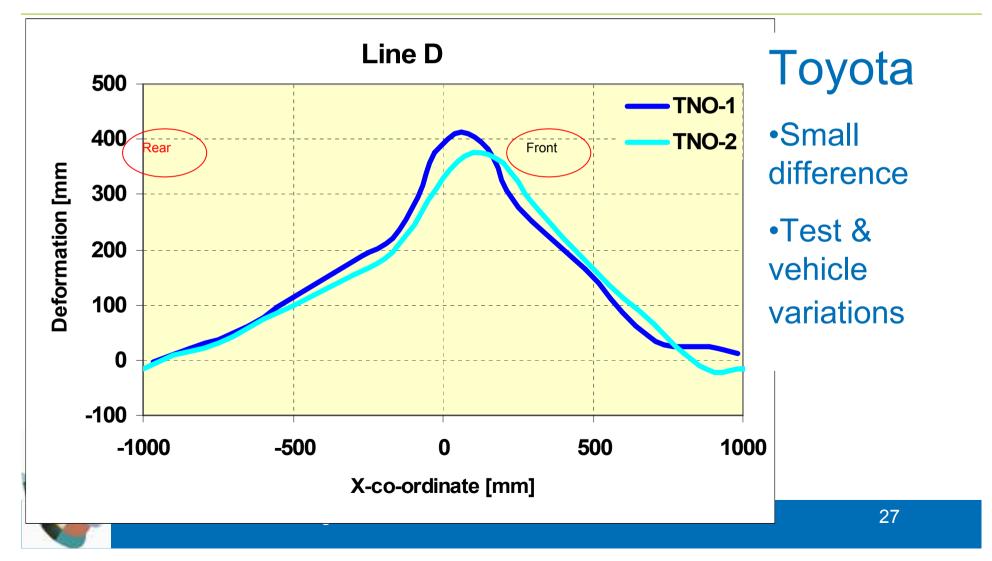
Car to pole / Simulation example



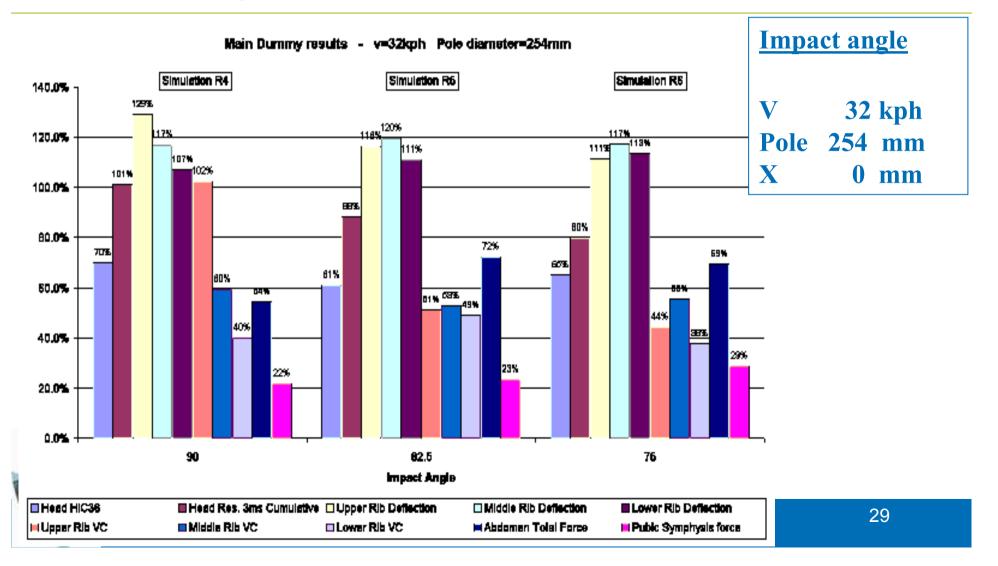
Subaru Legacy	Test S1	Test S2	Test S3	Test S4
Test ID	045106JI	O3QQ	PB31RZP	EA82RZP
Laboratory	IDIADA	TRL	Subaru	Subaru
Dummy	WorldSID	WorldSID	ES-2	ES-2
Test mass	1725 kg	1730 kg	1789 kg	1681 kg
Test angle	75°	90°	75	90°
Test velocity	31.8 km/h	31.7 km/h	31.5 km/h	29.0 km/h
Impact accuracy	4 mm fore	8 mm aft	2 mm/*	6 mm/*
Toyota Avensis	Test T1	Test T2	Test T3	Test T4
Test ID	F044703	F051701	14497	04NQ
Laboratory	TNO	TNO	Fiat	TRL
Dummy	ES-2	ES-2	ES-2	ES-2
Test mass	1500 kg	1505 kg	1501 kg	1506 kg
Test angle	75°	75°	75°	90°
Test velocity	32.4 km/h	31.9 km/h	32.5 km/h	29 km/h
Impact accuracy	4 mm fore	7 mm fore	7 mm fore	14 mm aft

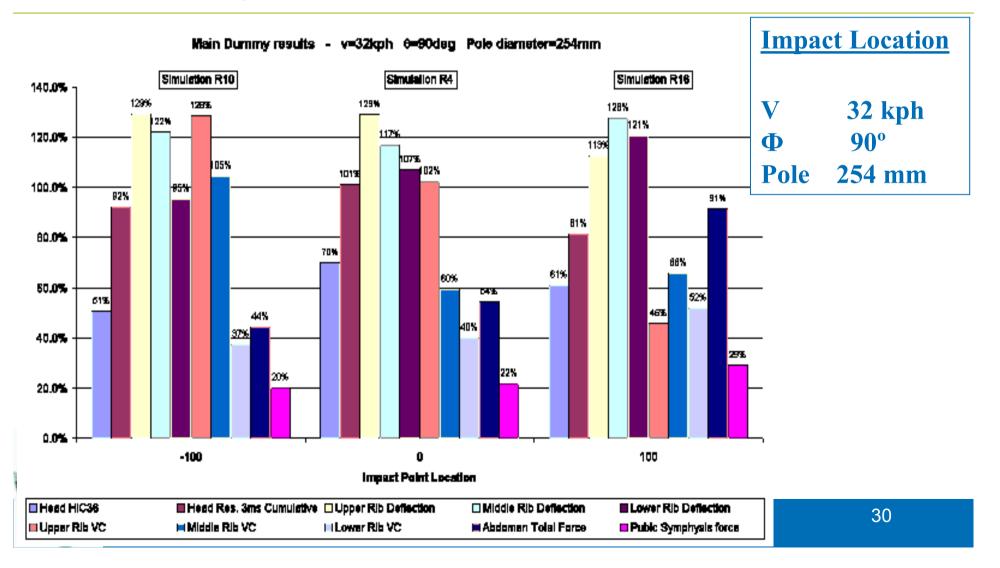


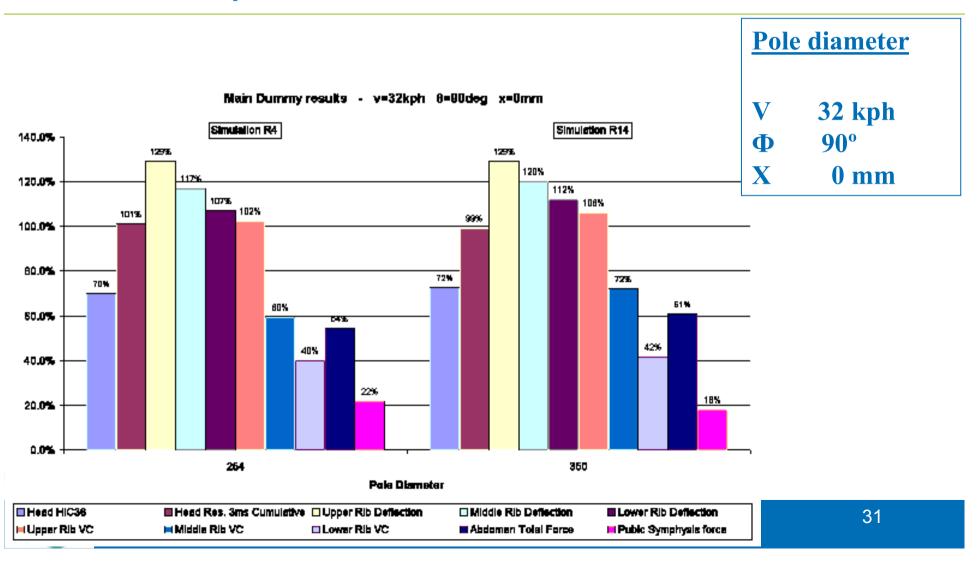




Full scale test / Summary of results


- General
 - No practical problems to carry out tests
- Dummies
 - Subaru results difficult to compare by variation in airbag timing
 - Repeatability of ES-2 tests is good
 - Changing impact location increased rib deflection values
 - NPRM-214 results in lower injury rib values and higher values for the other body regions
- Deformations
 - Toyota NPRM-214 tests quit similar
 - Maximum deformations of Subaru NPRM-214 and perpendicular test were about equal


Car to pole tests / Simulation results


Car to pole tests / Simulation results

Car to pole tests / Simulation results

Simulations / Summary of results

- Dummy injuries increase with higher impact velocity
- The 75° oblique test configuration results in higher dummy injury criteria values, for the abdomen and pelvis regions, compared to the perpendicular case
- The dummy injury values for the 75° oblique test configuration are approximately equivalent to those for a perpendicular test with the impact location contact point on the car shifted 100 mm forward.
- Pole diameter has only a minor effect on test results
- The study shows that a change in the airbag firing time from 16 msec to 40 - 50 ms can result in large changes in the dummy injury criteria of the order of those seen by changing the test configuration parameters.

Final conclusions

- Repeatability oblique tests
 - Toyota tests showed good repeatability
- Oblique vs perpendicular and impact location
 - Oblique needs test equipment modifications
 - ES2 and WorldSID more accurate in perpendicular loading
 - Impact location more important than impact angle
 - Perpendicular test to be preferable for Europe
 - However oblique test acceptable for international harmonisation
- Impact speed / Pole diameter
 - No need to alter the proposed speed of 32 km/h
 - No needs to change the current diameter of 254 mm
- WorldSID vs ES2
- No significant problems with one of the dummies
- Design changes needed for oblique loading (WorldSID ongoing)
 CDSD (DSL meeting (Druggele (Moreh 2rd, 2011)

More information

- Contact
 - Ton Versmissen / ton.versmissen@tno.nl
- Download
 - APROSYS deliverable D1.1.2A
 - www.aprosys.com/

Acknowledgments

- WP1.1 partners
 - BAST
 - Cellbond
 - CRF
 - FIAT
 - IDIADA
 - INSIA UPM
 - TK-P
 - TNO
 - Toyota
 - TRL
 - TUG
 - VW

GRSP / PSI meeting / Brussels / March 3rd, 2011

- European Commission DG-TREN
- Test vehicles
 - Subaru
- Test and simulation results
 - Subaru
- Support / additional tests
 - DOTARS, Australian
 - RDW, the Netherlands