# *FMVSS No. 226 – Ejection Mitigation*

# **Final Rule**

#### Presented by Susan Meyerson 2<sup>nd</sup> Meeting of the Pole Side Impact GTR Brussels, Belgium March 3-4, 2011







#### Goal of the standard

#### **Increase occupant containment in rollover and side crashes**

- Belted and unbelted occupants
- Three rows of seating

### > Likely resulting vehicle changes

- **Larger air bag curtains with longer inflation**
- □ Improved sensors



#### Occupant Injury and Fatality Percentages by Ejection Route in All Crash Types (Annualized 1997 – 2008 NASS and FARS)

| <b>Ejection Route</b>                           | <b>MAIS 3-5</b> | Fatal  |  |  |  |  |
|-------------------------------------------------|-----------------|--------|--|--|--|--|
| Windshield                                      | 12.5%           | 10.5%  |  |  |  |  |
| First Row Windows                               | 44.5%           | 54.2%  |  |  |  |  |
| Second-Row Windows                              | 5.7%            | 7.7%   |  |  |  |  |
| Third-Row Windows                               | 0.8%            | 0.3%   |  |  |  |  |
| Fourth-Row Windows                              | 0.0%            | 0.4%   |  |  |  |  |
| Fifth-Row Window                                | 0.0%            | 0.1%   |  |  |  |  |
| Cargo Area Rear of Row 2                        | 0.2%            | 0.5%   |  |  |  |  |
| Backlight                                       | 12.2%           | 4.8%   |  |  |  |  |
| Roof Panel or Glazing                           | 3.3%            | 3.1%   |  |  |  |  |
| Roof Other                                      | 0.9%            | 0.8%   |  |  |  |  |
| Multiple Windows                                | 0.2%            | 0.0%   |  |  |  |  |
| Not Glazing                                     | 19.7%           | 17.6%  |  |  |  |  |
| Subtotals                                       |                 |        |  |  |  |  |
| Rows 1-3                                        | 51.0%           | 62.2%  |  |  |  |  |
| 4 <sup>th</sup> , 5 <sup>th</sup> Row and Cargo | 0.2%            | 1.0%   |  |  |  |  |
| Total                                           | 100.0%          | 100.0% |  |  |  |  |
|                                                 |                 |        |  |  |  |  |

www.nhtsa.g

## Field Breakage Pattern



MY 2000 Audi A8, 4 ¼-turn rollover

MY 2003 Lincoln Aviator, 8 1/4-turn rollover



# **Regulatory Approach**

### Impact test of side windows/curtains at multiple locations

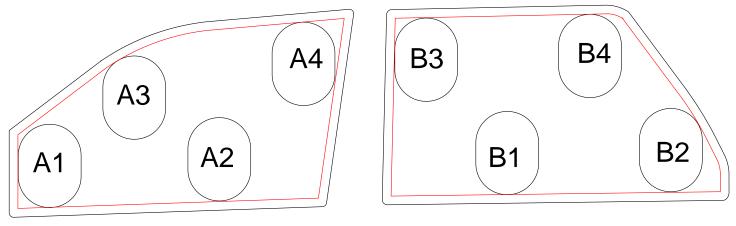
- Impact locations selected to assure full opening coverage
- Impact velocities and timing bound ejection problem
- Assures robust occupant containment



#### > No sensor test requirement

- **Complexities in test procedure development**
- □ No indication of need based upon field data and industry reports
- **FRIA** assumes sensor benefits and accounts for their costs




# Final Rule Test Specifics

#### > Test device

- **Linear impactor with headform end**
- □ Total impactor mass = 40 lb (18 kg).
- Critical parameters affecting requirement stringency
  - □ Performance criterion: ≤100 mm displacement
  - □ Target locations: 4 per window opening
  - □ Impact velocity/timing: 16 & 20 km/h
    - High speed @ 1.5 sec → fast roll rate, early ejections
    - Low speed @ 6 sec  $\rightarrow$  severe multiple rolls, late ejections



## Final Rule Target Location Selection and Window Condition



Front Window

**Rear Window** 

#### > Goal of target pattern is full coverage

- **Rollover is a random event**
- □ Any opening of sufficient size provides exit route
- Window (Glazing) preparation
  - Advanced glazing ~ up and pre-broken for some window (see next slide)
  - Tempered ~ down/removed



## Additional Information about Advanced Glazing

- Final rule doesn't allow use of advanced glazing in movable windows in 16 km/h-6 sec. Test.
  - **D** Effectively requires the use of curtains in movable windows.
- Concerns about the use of advanced glazing in movable windows.
  - 30% of ejections are through windows that were open prior to crash.
  - □ Field data show loss of integrity.
- Advanced glazing bonded to fixed windows potentially more effective.
  - **Could be used as standalone countermeasure at these locations.**
  - But even windshields (bonded laminated glazing) can be breached (11% of fatal ejections).
- > Advanced glazing is expensive \$20 for a side window \*\*\*



# Final Rule Phase-in Schedule

Lead-time: 2 model years after final rule publication, with advanced credits for certified vehicles.

Phase-in if final rule publication between 9/2/10 and 8/31/11.

- □ 1<sup>st</sup> year 25% (begin 9/1/2013)
- □ 2<sup>nd</sup> year 50% (begin 9/1/2014)
- □ 3<sup>rd</sup> year 75% (begin 9/1/2015)
- □ 4<sup>th</sup> year 100% with credits allowed (begin 9/1/2016)



## Final Rule Benefit Estimate

Lives Saved (w/ 100% ESC installation rate and FMVSS 214 Benefits accounted for)

| Restraint<br>Use/Level<br>of<br>Ejection | Fatal Target<br>Population | Total<br>Effectiveness <sup>†</sup> | Lives<br>Saved |
|------------------------------------------|----------------------------|-------------------------------------|----------------|
| Belted/<br>partial                       | 117                        | 37.6%                               | 44             |
| Belted/<br>complete                      | 8                          | 0%                                  | 0              |
| Unbelted/<br>partial                     | 298                        | 26.5%                               | 79             |
| Unbelted/<br>complete                    | 951                        | 26.4%                               | 251            |
| Total                                    | 1,374                      |                                     | 374            |

<sup>†</sup> Considers effectiveness of sensors, containment countermeasures, containment fatality reduction factor, and adjusted with MY 2011 voluntarily installed rollover bag system

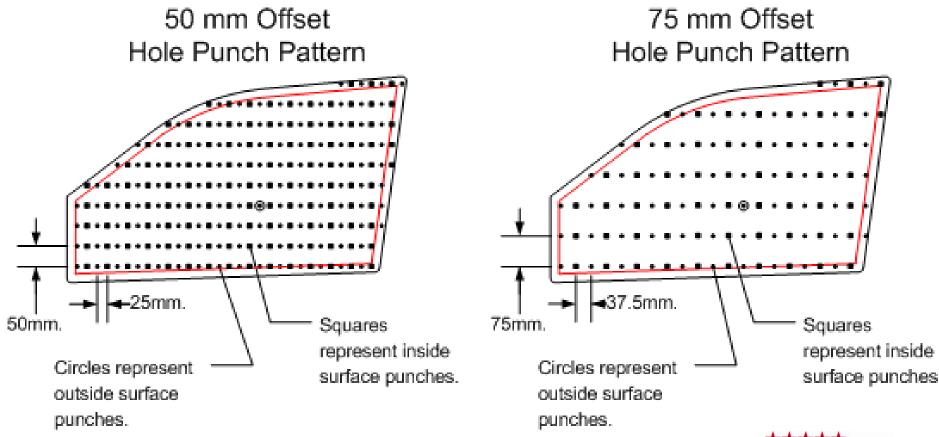


# **Final Rule Incremental Costs**

| Costs              | Ejection<br>Mitigation<br>System | Weighted MY<br>2011<br>Manufacturers'<br>Plan | Incremental<br>Costs | ELS              | S Cost per<br>ELS |  |
|--------------------|----------------------------------|-----------------------------------------------|----------------------|------------------|-------------------|--|
| Per Vehicle        | \$53                             | \$22                                          | \$31                 | 450+             | \$1.4 M/L*        |  |
| Total <sup>†</sup> | \$880 million                    | \$373 million                                 | \$507 million        | 458 <sup>‡</sup> | \$1.7 M/L**       |  |

- † Assumes 16.5 million light vehicle sales
- **‡** Serious and fatal injuries (AIS 3+)
- \* Discounted at 3%
- \*\* Discounted at 7%

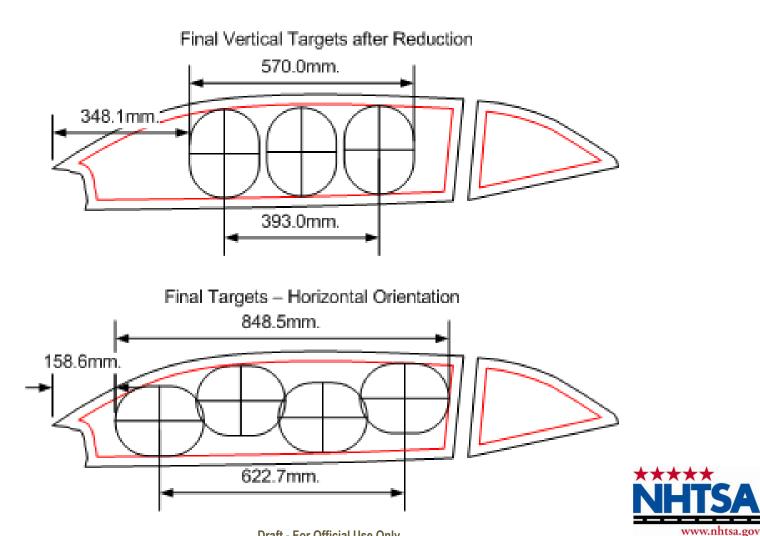



## For More Information

# Final Rule published on Jan 19, 2011 (76FR3211) www.regulations.gov Docket: NHTSA-2011-0004



# **Glazing Breakage Pattern**


NPRM





**Final Rule** 

## **Rotate Headform to Increase Impact** Locations



**Draft - For Official Use Only** 

## Lead Time for Standards Relevant to Rollover/Ejection Mitigation

|                                                 | 2008 | 2009 | 2010                                    | 2011 | 2012                 | 2013                        | 2014   | 2015  | 2016   | 2017   | 2018 |
|-------------------------------------------------|------|------|-----------------------------------------|------|----------------------|-----------------------------|--------|-------|--------|--------|------|
|                                                 |      |      |                                         |      |                      |                             |        |       | 100%   |        |      |
| FMVSS No. 214                                   |      |      | Phase-in (≤3,856 kg)                    |      | 100%                 | 100%                        | Multi- |       |        |        |      |
| Upgrade                                         | Lead | Time | ( · · · · · · · · · · · · · · · · · · · |      |                      |                             | ≤3856  | ≥3856 | Stage  |        |      |
|                                                 |      |      |                                         |      |                      |                             |        |       | 100%   | 100%   |      |
| FMVSS No. 216 Roof                              |      |      |                                         |      | Phase-in (≤2,722 kg) |                             | 100%   | LTV   | Multi- |        |      |
| Crush Resistance                                |      |      | Lead Time 25%, 509                      |      | %, 50%, 7            | 75%                         | ≤2722  | Bus   | Stage  |        |      |
|                                                 |      |      |                                         |      |                      |                             |        |       |        | 100%   | 100% |
| FMVSS No. 226                                   |      |      |                                         |      |                      | Phase-in                    |        |       | No     | Multi- |      |
| Ejection Mitigation                             |      |      | Lead Time                               |      | 25%, 5               | 5%, 50%, 75%, 100% w/credit |        |       | Credit | Stage  |      |
| All years refer to September 1st effective date |      |      |                                         |      |                      |                             |        |       |        |        |      |

