Amending ECE/TRANS/WP.29/GRB/2011/11

I. Proposal

Annex 6

Paragraph 3.5., amend to read:

"3.5. Duration and speed.

When the deceleration method is selected, the following requirements apply:

- (a) The deceleration j shall be determined in exact $d\omega/dt$ or approximate $\Delta\omega/\Delta t$ form, where ω is angular velocity, t time
- (b) For duration Δt , the time increments shall not exceed 0.5 s;
- (c) Any variation of the test drum speed shall not exceed 1 km/h within one time increment."

Paragraph 4.6.2., amend to read:

"4.6.2. Deceleration method

The deceleration method follows the procedure below:

- (a) Remove the tyre from the test surface;
- (b) Record the deceleration of the test drum $\Delta\omega Do/\Delta t$ and that of the unloaded tyre $\Delta\omega_{T0}/\Delta t^3$ or record the deceleration of the test drum j_{D0} and that of the unloaded tyre j_{T0} in exact or approximate form in accordance with paragraph 3.5."

Paragraph 5.1.5., amend to read:

"5.1.5. Deceleration method

Calculate the parasitic losses F_{pl} , in newton.

$$F_{pl} = \frac{I_D}{R} \left(\frac{\Delta \omega_{D0}}{\Delta t_0} \right) + \frac{I_T}{R_r} \left(\frac{\Delta \omega_{T0}}{\Delta t_0} \right)$$

Where:

I_D	is the test drum inertia in rotation, in kilogram meter squared,
R	is the test drum surface radius, in meter,
ω_{D0}	is the test drum angular speed, without tyre, in radians per second,
Δt_0	is the time increment chosen for the measurement of the parasitic losses without tyre, in second,
I_T	is the spindle, tyre and wheel inertia in rotation, in kilogram meter squared,
R	is the tyre rolling radius, in metre,

is the tyre angular speed, unloaded tyre, in radian per second.

Or

$$F_{pl} = \frac{I_D}{R} j_{D0} + \frac{I_T}{R_r} j_{T0}$$

where:

ID	is the test drum inertia in rotation, in kilogram meter squared;			
R	is the test drum surface radius, in meter;			
j _{D0}	is the deceleration of the test drum, without tyre, in radians per second squared;			
IT	is the spindle, tyre and wheel inertia in rotation, in kilogram meter squared;			
Rr	is the tyre rolling radius, in metre;			
ј т0	is the deceleration of unloaded tyre, in radians per second squared."			

Paragraph 5.2.5., amend to read:

"5.2.5. Deceleration method

The rolling resistance F_r, in newton, is calculated using the equation:

$$F_{\rm r} = \frac{I_{\rm D}}{R} \left(\frac{\Delta \omega_{\rm v}}{\Delta t_{\rm v}} \right) + \frac{RI_{\rm T}}{R_{\rm r}^2} \left(\frac{\Delta \omega_{\rm v}}{\Delta t_{\rm v}} \right) - F_{\rm pl}$$

Where:

<i>I</i> D	is tl	he test drum	inertia ir	rotation,	in ki	ilogram	metre s	squarec	1
------------	-------	--------------	------------	-----------	-------	---------	---------	---------	---

- *R* is the test drum surface radius, in meter,
- $F_{\rm pl}$ represents the parasitic losses as calculated in paragraph 5.1.5.,
- $\Delta t_{\rm v}$ is the time increment chosen for measurement, in second,
- $\Delta \omega_v$ is the test drum angular speed increment, without tyre, in radian per second,
- $I_{\rm T}$ is the spindle, tyre and wheel inertia in rotation, in kilogram metre squared,
- $R_{\rm r}$ is the tyre rolling radius, in metre,
- $F_{\rm r}$ is the rolling resistance, in newton.

Or

 ω_{T0}

$$Fr = \frac{I_D}{R} j_V + \frac{RI_T}{R_r^2} j_V - F_{pl}$$

where:

Where:

ID	is the test drum inertia in rotation, in kilogram metre squared,
R	is the test drum surface radius, in meter,
F _{pl}	represents the parasitic losses as calculated in paragraph 5.1.5.,
jV	is the deceleration of the test drum, in radians per second squared,
I _T	is the spindle, tyre and wheel inertia in rotation, in kilogram metre squared,
R _r	is the tyre rolling radius, in metre,
Fr	is the rolling resistance, in newton."

Annex 6, Appendix 1

Paragraph 4, amend to read:

"4. Control accuracy

... (d) time: +/- 0.02 s **0.5 ms** ..."