
Head Restraints Static Height and Backset Measurement

Hans Ammerlaan

Content

- Reasoning behind NL proposal for GTR7-01-03
- Comparison erect sitting height dummies versus human males
- Conclusions

Reasoning behind NL proposal for GTR7-01-03

- Within EEVC the method of UNECE Reg.17 Head Restraint Measurement Method has been taken on board as part of a Cost-benefit Analysis
- The published report "UK Cost-benefit Analysis: Enhanced Geometric Requirements for Vehicle Head Restraints" can be downloaded from www.eevc.org
- In its Appendix "Regulation 17 Head Restraint Measurement Method" it is explained by means of a series of five figures what serious errors can be made
- GTR7-01-03 shortly mentions this problem; these figures are reproduced here to illustrate the problem

Figure 2: NHTSA conversion between RCAR and UN-ECE Reg. 17 head restraint height measurements

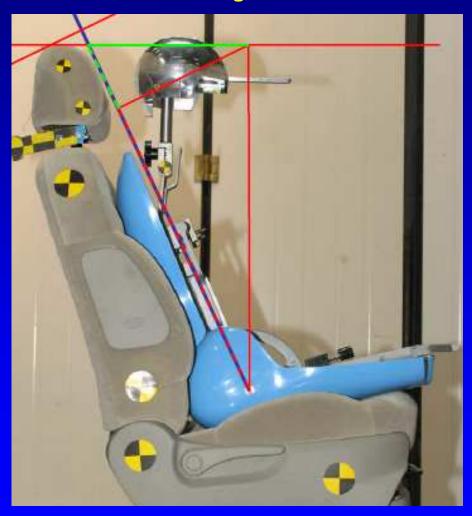


Figure 3: Underestimation error in backset conversion

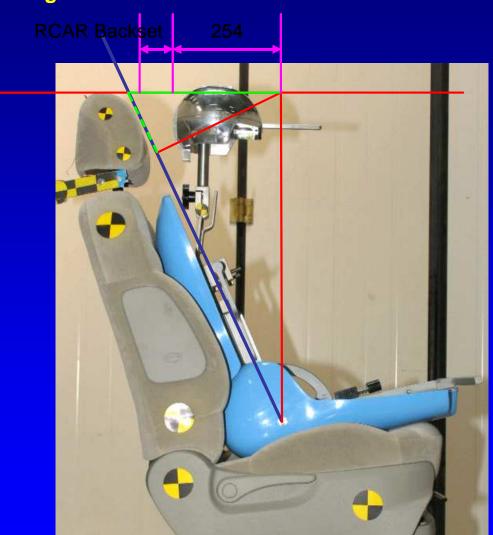
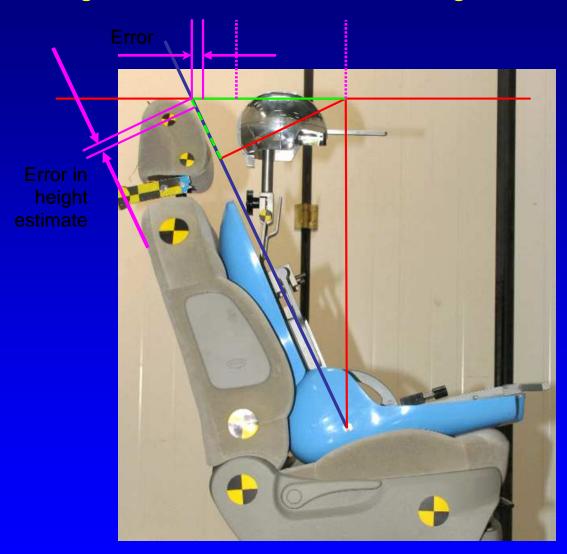
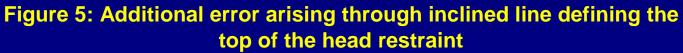
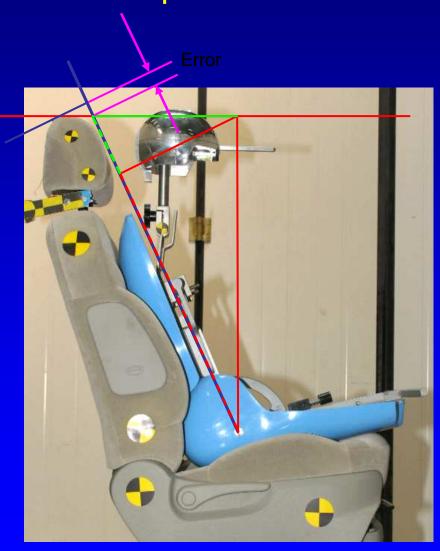





Figure 4: Effect of backset error on height estimation

Erect sitting height dummies versus human males

		Erect sitting height					
		Percentile					
		5	20	50	95		
	UMTRI			911			
Dummies-	Hybrid III			884			
Duminies	BIORID			884			
	RID3D			909			
Males	Caesar USA			928	994		
Maies	Caesar NL	882	912	949	1016		

Erect sitting height dummies versus human males

	HMTDI 92 52 1		11-1-11	DIODID	DID3D	Cooper data LICA made		Canada NI wala			
	UMTRI-83-53-1		Hybrid III	BIOKID	RID3D	Caesar data USA male		Caesar data NL male			
	Dec.'83					population 2000		population updated to 2004			
	http://deepblue.lib.		www.ftss.	www.ra	TNO	www.nedscan.nl		www.nedscan.nl			
	umich.edu/		com	denton.c				_ 			
	difficit.odd/		<u> </u>	om							
th %	ıg	Erect	Erect	Erect	Erect	gı	Erect sitting	ıg	Erect sitting height		
ile	ndiı ght	sitting	sitting	sitting	sitting	ndin	height	Standing height			
male	Standing height	height	height	height	height	Standing height		Standir height			
1							829		860		
5							862		882		
10							876		896		
20							894		912		
25							901		916		
30							906		924		
40							917		940		
50	1751	911	884	884	909	1777	928	1818	949		
60							937		960		
70							949		971		
75							954		976		
80							960		982		
90							977		1001		
95	_	_	935	_	_	1913	994	1971	1016		
99							1022		1052		
All measurements in mm											

Conclusions (1):

- The goal of a head restraint with an appropriate height is not only reached through taking account of Anthropometry
- The present UNECE Reg.17 static height measurement method (which is also in gtr7) simply measures this height to the top of the head restraint, without relating this measurement to the fact whether this height is too far backwards or not
- So the present method could easily over-estimate the height that effectively is protecting people, because the top could mean the backmost corner of the head restraint (the total error of the shown seat is 48 mm)
- Therefore the NL doc. GTR7-01-03 proposes to link the following three measurements:
 - the measurement of head restraint height (above the R-point)
 - the measurement of backset
 - the measurement of the height of the front contact surface of the head restraint (measured on the median longitudinal plane) in order to provide an appropriate catching zone

Conclusions (2):

- The option of using the 3-D-H machine equipped with the HRMD-probe (this combination should represent the UMTR midsized male, see UMTRI-83-53-1) causes difficulties
- Using a Coordinate Measuring Machine (in combination with a semi-spherical headform probe) will exclude non-biofidelic interaction caused by the 3-D-H machine, and can easily provide data with regard to the head restraint height in combination with its backset (values can be related to the Rpoint)
- The advantage of using the method with the Coordinate Measuring Machine is that also backset can be checked for people taller than a mid-sized male that originates from more than 25 years ago!

Thank you for your attention