Improvement of Durability of Bone Core

TEG-071-Add.1 8th Dec. 2008 JAMA-JARI

Background

- •Recently, many of user wants to use Flex-PLI, so to be <u>damaged the bone core is very</u> <u>unfavorable</u> especially during evaluation tests of impactor.
- •Moreover, Flex-GTR has to use both sides of strain gages at the same time to measure bending moment, so only <u>one side of strain</u> gage damage is critical.
- •Therefore, <u>we tried to improve durability of</u> <u>bone core as we can possible</u> by using different plastic material of bone core (glass fiber material is the same).

Overload tests for both bone cores

Test Method (overload test)

Femur Bone Core Quasi-static 3-Point Bending Test

 F_c : Force Center, D_c : Deflection Center M _c : Moment Center (Nm) = $F_c/2$ (N) x 0.165 (m)

Bone Core Surface Conditions (After 500 Nm is applied)

<u>Comparisons for the both bone cores responses</u>

Quasi-static 3-Point Bending Characteristics of Improved Bone Cores (SN01-05)

Quasi-static 3-Point Bending Test Tibia Bone Core: Improved SN01-SN05

Comparison of Bending Characteristics of Current and Improved Bone Cores

Quasi-static 3-Point Bending Test Femur Bone Core

F_c: Force Center, D_c: Deflection Center

 M_{c} : Moment Center (Nm) = F_c/2 (N) x 0.165 (m)

Comparison of Bending Characteristics of Current and Improved Bone Cores

F.: Force Center, D.: Deflection Center

 M_{c} : Moment Center (Nm) = F $_{c}/2$ (N) x 0.205 (m)

 F_c : Force Center, D_c : Deflection Center M_c : Moment Center (Nm) = $F_c/2$ (N) x 0.205 (m)

Test Method (for overload test)

Femur Bone Core Quasi-static 3-Point Bending Test

 F_c : Force Center, D_c : Deflection Center M _c : Moment Center (Nm) = $F_c/2$ (N) x 0.165 (m)

Dynamic Assembly Calibration Test Results (Tibia: Waveform)

Current and Improved Bone core

Dynamic Assembly Calibration Test Results (Femur: Waveform)

Current and Improved Bone core

Dynamic Assembly Calibration Test Results (Knee: Waveform)

Current and Improved Bone core

Time (ms)

Dynamic Assembly Calibration Test Results (Femur and Tibia: Max. Value)

Improved Bone Core

Dynamic Assembly Calibration Test Results (Knee: Max. Value)

Improved Bone Core

Improvement of Durability of Bone Core

Conclusions

- Improved bone core has superior durability than the current one.
- Improved bone core and current bone core has same bending characteristics under the quasistatic tests, dynamic 3-point bending tests, and dynamic assembly calibration tests, i.e. <u>both</u> <u>bone cores responses are comparable</u>.
- •JAMA-JARI recommends to use the improved bone cores for the <u>Flex-GTR-prototype spare</u> <u>parts.</u>

