Informal document No. **GRPE-58-11-Rev.1** (58th GRPE, 8-12 June 2009, agenda item 5)

CORRIGENDA

Working document ECE/TRANS/WP.29/GRPE/2009/16

Proposal for draft global technical regulation concerning the test procedure for compressionignition (C.I.) engines to be installed in agricultural and forestry tractors and in non-road mobile machinery with regard to the emissions of pollutants by the engine

Submitted by the expert from the European Commission

Working document ECE/TRANS/WP.29/GRPE/2009/16 as deposited at GRPE secretariat on the 20 March 2009 and released 1 April 2009 with changes by the GRPE secretariat.

http://www.unece.org/trans/main/wp29/wp29wgs/wp29grpe/grpedoc 2009.html

Part A and part B up to Annex 6 – Corrigendum

#	WHERE	ERRATA	CORRIGE
1	Short Title	EXHAUST EMISSIONS TEST PROTOCOL OF	EMISSIONS TEST PROTOCOL OF NON-ROAD
		NON-ROAD MOBILE MACHINERY	MOBILE MACHINERY ENGINES
2	A.STATEMENT OF	Deposited text:	The guidance document has no legal status and it does
	TECHNICAL	The guidance document has no legal status, it does not	not introduce any additional requirements
	RATIONALE AND	introduce any additional requirements	
	JUSTIFICATION;		[in order to maintain agreed content]
	1.TECHNICAL	in GRPE/2009/16:	
	AND ECONOMIC	The guidance document has no legal status <u>as</u> it does	
	FEASIBILITY;	not introduce any additional requirements	
	Paragraph 7		
3	A. STATEMENT	belive [incorrect spelling]	believe
	OF TECHNICAL		
	RATIONALE AND		
	JUSTIFICATION; 3.		
	POTENTIAL COST		
	EFFECTIVENESS;		
	Paragraph 11		
4	page 1, footnote	wrong format ¹	1/
5	7.8.3.4.	Points with negative torque values have to be	[reintroduce] Points with negative torque values have
		accounted for as zero work. [sentence mistakenly deleted]	to be accounted for as zero work.
6	Table 7.3, second	Conditions (n = engine speed, T = torque)	Conditions (n = engine speed, T = torque)
	column	$n_{\rm ref} = 0$ per cent	$n_{\rm ref} = 0$ per cent
		and	and
		$T_{\rm ref} = 0$ per cent	$T_{\rm ref} = 0$ per cent
		and	and

		$T_{act} > (T_{ref} - 0.02 \ T_{maxmappedtorque})$ and $T_{act} < (T_{ref} + 0.02 \ T_{maxmappedtorque})$ $T_{act} < (T_{ref} + 0.02 \ T_{maxmappedtorque})$	$T_{act} > (T_{ref} - 0.02 \ T_{maxmappedtorque})$ and $T_{act} < (T_{ref} + 0.02 \ T_{maxmappedtorque})$ $T_{act} < (T_{ref} + 0.02 \ T_{maxmappedtorque})$
		$n_{\text{act}} \le 1.02 \ n_{\text{ref}} \text{ and } T_{\text{act}} > T_{\text{ref}}$	$n_{\rm act} \le 1.02 \ n_{\rm ref} \ {\rm and} \ T_{\rm act} > T_{\rm ref}$ or
		$\frac{dHd}{n_{act}} > n_{ref}$ and $T_{act} \le T_{ref}$	$\frac{GI}{n_{\text{act}}} > n_{\text{ref}} \text{ and } T_{\text{act}} \leq T_{\text{ref}}$
		and	or
		$\overline{n_{\text{act}}} > 1.02 n_{\text{ref}} \text{ and } T_{\text{ref}} < T_{\text{act}} \leq (T_{\text{ref}} + 0.02)$	$\overline{n_{\rm act}} > 1.02 \ n_{\rm ref} \ {\rm and} \ T_{\rm ref} < T_{\rm act} \le (T_{\rm ref} + 0.02)$
		T _{maxmappedtorque})	T _{maxmappedtorque})
		$n_{\rm act} < n_{\rm ref}$ and $T_{\rm act} \ge T_{\rm ref}$	$n_{\rm act} < n_{\rm ref}$ and $T_{\rm act} \ge T_{\rm ref}$
		and	<u>or</u>
		$n_{\rm act} \ge 0.98 \ n_{\rm ref}$ and $T_{\rm act} < T_{\rm ref}$	$n_{\rm act} \ge 0.98 \ n_{\rm ref} \ {\rm and} \ T_{\rm act} < T_{\rm ref}$
		and	
		$n_{\rm act} < 0.98 \ n_{\rm ref} \ \text{and} \ T_{\rm ref} > T_{\rm act} \ge (T_{\rm ref} - 0.02)$	$n_{\rm act} < 0.98 \ n_{\rm ref} \ \text{and} \ T_{\rm ref} > T_{\rm act} \ge (T_{\rm ref} - 0.02)$
		T _{maxmappedtorque})	$T_{\text{maxmappedtorque}}$
		[4 <u>and</u> have to be replaced by <u>or</u>]	
7	8.1.10.2.4	wrong subdivision in i, ii, iii; editor introduced subdivision where none should be	delete sub division
8	9.2.2	shall be maintained within one of the following	shall be maintained within one of the following ranges
		ranges(option):	(option):
		(i) between 293 and 303 K (20 and 30 °C) or	(a) between 293 and 303 K (20 and 30 °C) or
		(ii) between 293 and 325 K (20 to 52°C)	(b) between 293 and 325 K (20 to 52°C)
		The range shall be selected by the Contracting Party.	in close proximity to the entrance into the dilution tunnel. The range shall be selected by the Contracting
		[the half sentence 'in close proximity to the entrance	Party.
		into the dilution tunnel' was lost copying the text from	
		9.2.3.2 during its introduction by the Editorial	use missing half sentence from this paragraph 9.2.3.2

		Committee]	
9	A.2.4. (b)	that the $\underline{\sigma}_i$ are the errors	that the ε_i are the errors

Annex $A_{1} - Corrigendum$	Annex	A.7 –	Corrigendum
-----------------------------	-------	-------	-------------

#	WHERE	ERRATA	CORRIGE
1	Title Annex 7	Emission molar based calculation	Molar based emission calculation
2	Para A.7.0.1.	<i>x</i> _{dil}	<i>x</i> _{dil/exh}
	footnote (2) 2nd line		
3	A.7.0.1. footnote (2)	<i>x</i> _{dil}	$x_{ m dil/exh}$
	3rd line		
4	Eq. (A.7-3)	$x_{\rm H_{2O}} = \frac{P_{\rm H2O}}{r_{\rm H_{2O}}}$	$x_{\rm H2O} = \frac{p_{\rm H2O}}{2}$
		P_{abs}	P_{abs}
5	A.7.1.2.2.; A.7.1.2.3.	vapor [incorrect spelling]	vapour
6	Eq. (A.7-28)	$m_{\rm gas} = M_{\rm gas} \cdot \prod \dot{n}_{\rm exhwet} \cdot x_{\rm gaswet} \cdot {\rm d}t$	$m_{\rm gas} = M_{\rm gas} \cdot \int \dot{n}_{\rm exh} \cdot x_{\rm gas} \cdot {\rm d}t$
7	Legend Eq. (A.7-28)	$\dot{n}_{ m exhwet}$	$\dot{n}_{ m exh}$
8	Legend of Eq. (A.7-	x_{gaswet} = instantaneous generic gas molar concentration	x_{gas} = instantaneous generic gas molar concentration
	28)		on a wet basis
9	Eq. (A.7-29)	$m_{\rm gas} = M_{\rm gas} \cdot \prod \dot{n}_{\rm exhwet} \cdot x_{\rm gaswet} \cdot dt \implies$	$m_{\rm gas} = M_{\rm gas} \cdot \int \dot{n}_{\rm exh} \cdot x_{\rm gas} \cdot {\rm d}t \Rightarrow$
		$m_{\text{gas}} = \frac{1}{f} \cdot M_{\text{gas}} \cdot \sum_{i=1}^{N} \dot{n}_{\text{exhwet},i} \cdot x_{\text{gaswet},i}$	$m_{\text{gas}} = \frac{1}{f} \cdot M_{\text{gas}} \cdot \sum_{i=1}^{N} \dot{n}_{\text{exh}i} \cdot x_{\text{gas}i}$
10	Legend Eq. (A.7-29)	$\dot{n}_{\mathrm{exhwet},i}$	$\dot{n}_{ m exhi}$
11	Legend Eq. (A.7-29)	$x_{\text{gaswet},i}$ = instantaneous generic gas molar concentration	x_{gasi} = instantaneous generic gas molar concentration
			on a wet basis
12	Eq. (A.7-30)	$m_{\text{gas}} = \frac{1}{f} \cdot M_{\text{gas}} \cdot \sum_{i=1}^{N} \dot{n}_{\text{exhwet},i} \cdot x_{\text{gaswet},i}$	$m_{\text{gas}} = \frac{1}{f} \cdot M_{\text{gas}} \cdot \sum_{i=1}^{N} \dot{n}_{\text{exh}i} \cdot x_{\text{gas}i}$

-			
13	Legend Eq. (A.7-30)	$\dot{n}_{\mathrm{exhwet},i}$	$\dot{n}_{\mathrm{exh}i}$
14	Legend Eq. (A.7-30)	$x_{\text{gaswet},I}$ = instantaneous generic gas molar	x_{gasi} = instantaneous generic gas molar concentration
		concentration	on a wet basis
15	Eq. (A.7-31)	$m_{\rm gas} = M_{\rm gas} \cdot \overline{\dot{n}}_{\rm exhwet} \cdot \overline{x}_{\rm gaswet} \cdot t_{\rm cycle}$	$m_{\rm gas} = M_{\rm gas} \cdot \dot{n}_{\rm exh} \cdot \overline{x}_{\rm gas} \cdot \Delta t$
16	Legend Eq. (A.7-31)	\vec{n}_{exhwet} = mean exhaust gas molar flow rate on a wet basis	$\dot{n}_{\rm exh}$ = exhaust gas molar flow rate on a wet basis
17	Legend Eq. (A.7-31)	\overline{x}_{gaswet} = mean gaseous emission molar fraction	\overline{x}_{gas} = mean gaseous emission molar fraction on a wet basis
18	Legend Eq. (A.7-31)	$t_{\text{cycle}} = \text{test time interval}$	Δt = time duration of test interval
19	Eq. (A.7-32)	$m_{\text{gas}} = \frac{1}{f} \cdot M_{\text{gas}} \cdot \overline{x}_{\text{gaswet}} \cdot \sum_{i=1}^{N} \dot{n}_{\text{exhwet},i}$	$m_{\rm gas} = \frac{1}{f} \cdot M_{\rm gas} \cdot \overline{x}_{\rm gas} \cdot \sum_{i=1}^{\rm N} \dot{n}_{\rm exhi}$
20	Legend Eq. (A.7-32)	$\dot{n}_{\mathrm{exhwet},i}$	$\dot{n}_{\mathrm{exh}i}$
21	Legend Eq. (A.7-32)	\overline{x}_{gaswet} = mean gaseous emission molar fraction	\overline{x}_{gas} = mean gaseous emission molar fraction on a wet basis
22	Para A.7.3.2. 3rd line	Xgaswet	
23	Eq. (A.7-33)	$x_{\text{gasdry}} = \frac{x_{\text{gaswet}}}{1 - x_{\text{H2O}}}$	$x_{\text{gasdry}} = \frac{x_{\text{gas}}}{1 - x_{\text{H2O}}}$
24	Eq. (A.7-34)	$x_{\text{gaswet}} = \frac{x_{\text{gasdry}}}{1 + x_{\text{H2Odry}}}$	$x_{\rm gas} = \frac{x_{\rm gasdry}}{1 + x_{\rm H2Odry}}$
25	Legend Eq. (A.7-34)	X _{H2O,dry}	<i>x</i> _{H2Odry}
26	Eq. (see A.7-29)	See above errata of Eq. (A.7-29)	See above corrige of Eq. (A.7-29)
27	Eq. (see A.7-31)	See above errata of Eq. (A.7-31)	See above corrige of Eq. (A.7-31)
28	Eq. (see A.7-32)	See above errata of Eq. (A.7-32)	See above corrige of Eq. (A.7-32)

29	A.7.44.1.(a):	Changing exhaust flow rate shall be extracted. [the first line of the paragraph has been lost while editing]	If a batch sample from a changing exhaust flow rate is collected, a sample proportional to the changing exhaust flow rate shall be extracted.
30	Eq. (A.7-45)	$m_{\rm PM} = \overline{M}_{\rm PM} \cdot \overline{\dot{n}} \cdot t_{\rm cycle}$	$m_{\rm PM} = \overline{M}_{\rm PM} \cdot \dot{n} \cdot \Delta t$
31	Legend Eq. (A.7-45)	$\overline{\dot{n_i}}$ = mean exhaust molar flow rate	\dot{n} = exhaust molar flow rate
32	Legend Eq. (A.7-45)	$t_{\rm cycle} = {\rm test interval}$	Δt = time duration of test interval
33	Legend eq. (A.7-46): $DR 2^{nd}$ line	$m_{\rm dil} (DR = m/m_{\rm dil})$	$m_{\rm dil/exh} (DR = m/m_{\rm dil/exh})$
34	Legend Eq. (A.7-46): $DR 2^{nd}$ line	x _{dil}	Xdil/exh
35	Eq. (A.7-47)	$DR = \frac{1}{1 - x_{\rm dil}}$	$DR = \frac{1}{1 - x_{\text{dil/exh}}}$
36	A.7.7.1. and A.7.7.2.	A.7.7.1. and A.7.7.2 [incorrect numbering]	replace numbering by A.7.6.4. and A.7.6.5.
37	A.7.8.1. to A.7.8.4.	A.7.8.1. to A.7.8.4. [incorrect numbering]	replace numbering by A.7.7.1. and A.7.7.4.

Annex A.8 – Corrigendum

#	WHERE	ERRATA	CORRIGE
1	Eq. (A.8-1)	$c_{\text{NMHC}} = \frac{c_{\text{HC(w/oCutter)}} \cdot (1 - E_{\text{CH4}}) - c_{\text{HC(w/Cutter)}}}{E_{\text{C2H6}} - E_{\text{CH4}}}$	$c_{\rm NMHC} = \frac{c_{\rm HC(w/oNMC)} - c_{\rm HC(w/NMC)} \cdot (1 - E_{\rm CH4})}{E_{\rm C2H6} - E_{\rm CH4}}$
2	Eq. (A.8-2)	$c_{\rm CH4} = \frac{c_{\rm HC(w/Cutter)} - c_{\rm HC(w/oCutter)} \cdot (1 - E_{\rm C2H6})}{E_{\rm C2H6} - E_{\rm CH4}}$	$c_{\rm CH4} = \frac{c_{\rm HC(w/NMC)} - c_{\rm HC(w/NMC)} \cdot (1 - E_{\rm C2H6})}{E_{\rm C2H6} - E_{\rm CH4}}$
3	Eq. (A.8-22)	$f_{\rm c} = 0.5441 \cdot \left(c_{\rm CO2d} - c_{\rm CO2d}\right) + \frac{c_{\rm COd}}{18,522} + \frac{c_{\rm HCw}}{17,355}$	$f_{\rm c} = 0.5441 \cdot \left(c_{\rm CO2d} - c_{\rm CO2d,a}\right) + \frac{c_{\rm COd}}{18522} + \frac{c_{\rm HCw}}{17355}$
4	Legend Eq.	C _{CO2ad}	C _{CO2d,a}

	(A.8-22)		
5	Eq. (A.8-38)	$m_{\rm ed} = \frac{1.293 \cdot t \cdot K_{\rm V} \cdot p_{\rm P}}{T^{0.5}}$	$m_{\rm ed} = \frac{1.293 \cdot t \cdot K_{\rm V} \cdot p_{\rm p}}{T^{0.5}}$
6	Legend Eq. (A.8-38)	рр	<i>P</i> p
7	Eq. (A.8-39)	$m_{\rm ed} = 1.293 \cdot V_0 \cdot n_{\rm P} \cdot \frac{p_{\rm P}}{101.3} \cdot \frac{273}{T}$	$m_{\rm ed} = 1.293 \cdot V_0 \cdot n_{\rm p} \cdot \frac{p_{\rm p}}{101.3} \cdot \frac{273}{T}$
8	Legend Eq. (A.8-39)	рр	<i>P</i> p
9	Eq. (A.8-40)	$m_{\rm ed} = 1.293 \cdot q_{\rm SSV} \cdot \Delta t$	$m_{\rm ed} = 1.293 \cdot q_{\rm VSSV} \cdot \Delta t$
10	Eq. (A.8-41)	$q_{\rm SSV} = A_0 d_{\rm V}^2 C_{\rm d} p_{\rm P} \sqrt{\left[\frac{1}{T} \left(r_{\rm p}^{1,4286} - r_{\rm p}^{1,7143}\right) \cdot \left(\frac{1}{1 - r_{\rm D}^4 r_{\rm p}^{1,4286}}\right)\right]}$	$q_{VSSV} = A_0 d_V^2 C_d p_P \sqrt{\left[\frac{1}{T}\left(r_p^{1.4286} - r_p^{1.7143}\right) \cdot \left(\frac{1}{1 - r_D^4 r_p^{1.4286}}\right)\right]}$
11	Eq. (A.8-42)	$m_{\rm ed,i} = 1.293 \cdot q_{\rm SSV} \cdot \Delta t_i$	$m_{\rm ed,i} = 1.293 \cdot q_{\rm VSSV} \cdot \Delta t_i$
12	Legend Eq. (A.8-51)	$m_{\rm ed}$ = mass of equivalent diluted exhaust gas over the cycle [kg]	$m_{\rm ed}$ = mass of diluted exhaust gas over the cycle [kg]
13	Annex 8 appendix 1, A.8.1., A8.1.1. to A.8.1.3.	A.8.1., A8.1.1. to A.8.1.3. [incorrect numbering]	replace numbering by A.8.5., A.8.5.1 to A.8.5.3
14	Annex 8 appendix 2, A8.2	A8.2 [incorrect numbering]	replace numbering by A.8.6
15		d during the NRMM WG Meeting (10 June 2009) to update th ant changes in the WHDC gtr regarding the measurement/calcu	

	within July 2009	09).	
--	------------------	------	--