Economic Commission for Europe

Inland Transport Committee
Working Party on the Transport of Dangerous Goods
Joint Meeting of Experts on the Regulations annexed to the European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways (ADN) (ADN Safety Committee)
Fifteenth session
Geneva, 24-28 August 2009
Item 5 of the provisional agenda
\section*{Catalogue of questions}

Gases - knowledge of physics and chemistry, objectives 2.1,

2.2, 3.1, 3.2

Transmitted by the Central Commission for the Navigation of the Rhine (CCNR) ${ }^{1}$

1. At its fourteenth session, the ADN Safety Committee, recalling that, under 8.2.2.7.2.3 of the Regulations annexed to ADN, the ADN Administrative Committee was required to prepare a catalogue of questions for the ADN examinations, decided that the item should be put on the agenda for future sessions, in order to enable lists of questions to be translated and adopted progressively (ECE/TRANS/WP.15/AC.2/30, paras. 38 and 40).
2. This document contains the lists of questions proposed by CCNR in respect of knowledge of physics and chemistry for the examination on "gases":

- Examination objective 2.1: Gases: partial pressures and mixtures. Definitions and simple calculations
- Examination objective 2.2: Gases: partial pressures and mixtures. Pressure increase and gas release from cargo tanks

[^0]- Examination objective 3.1: Avogadro's number and calculation of masses of ideal gas - kmol, kg and pressure at $15^{\circ} \mathrm{C}$
- Examination objective 3.2: Avogadro's number and calculation of masses of ideal gas. Application of the mass formula

Knowledge of physics and chemistry

Examination objective 2.1: Gases: partial pressures and mixtures

Definitions and simple calculations

Number	Source	Correct answer
G 2101	Partial pressure - definitions	B
	What is the definition of the partial pressure of a gas in a gas mixture contained in a cargo tank?	
	A The pressure indicated on the pressure gauge	
	B The pressure the gas would have if that gas alone were contained in the cargo tank	
	C The volume that gas alone would occupy	
	D The difference between the pressure of that gas and the atmospheric pressure	
G 2102	Partial pressure - definitions	C
	What is the definition of the partial pressure of a gas in a gas mixture contained in a cargo tank?	
	A The gauge pressure +1 bar	
	B The volume of that gas at atmospheric pressure	
	C The pressure the gas would have if that gas alone were contained in the cargo tank	
	D The difference between the pressure in the cargo tank and the atmospheric pressure	
G 2103	$p_{\text {tot }}=\Sigma p_{i}$ and Vol. $\%=p_{i} \times 100 / p_{\text {tot }}$	D
	A cargo tank contains a mixture of nitrogen and propane. The volume per cent of nitrogen is 20 and the volume per cent of propane is 80 . The total absolute pressure in the cargo tank is 5.0 bar (absolute). What is the partial pressure of the propane?	
	A 0.2 bar (absolute)	
	B 0.8 bar (absolute)	
	C 3.2 bar (absolute)	
	D 4.0 bar (absolute)	
G 2104	$p_{\text {tot }}=\Sigma p_{i}$ and Vol. $-\%=p_{i} \times 100 / p_{\text {tot }}$	C
	A cargo tank contains a mixture of nitrogen and propane. The nitrogen has a partial pressure of 1.0 bar (absolute) and its volume per cent is 20 . What is the partial pressure of the propane?	

Number Source Correct answer

A 0.8 bar (absolute)
B 3.2 bar (absolute)
C 4.0 bar (absolute)
D 5.0 bar (absolute)
$p_{\text {tot }}=\Sigma p_{i}$ and Vol. $-\%=p_{i} \times 100 / p_{\text {tot }}$
B
A gas mixture composed of 70 volume per cent propane and 30 volume per cent butane is contained in a cargo tank, at a gauge overpressure of 9 bar (gauge). What is the partial pressure of the butane?

A $\quad 2.7$ bar (absolute)
B 3.0 bar (absolute)
C 6.3 bar (absolute)
D 7.0 bar (absolute)
G 2106 deleted
G $2107 \mathrm{p}_{\text {tot }}=\sum p_{i}$ and Vol. $-\%=p_{i} \times 100 / p_{\text {tot }}$
B
A gas mixture composed of propane and butane is contained in a cargo tank, at an overpressure of 9 bar (gauge). The partial pressure of the propane is 7.0 bar (absolute). What is the volume per cent of the butane?

A 20 volume per cent
B 30 volume per cent
C 40 volume per cent
D 60 volume per cent
G $2108 \mathrm{p}_{\text {tot }}=\Sigma p_{i}$ and Vol. $-\%=p_{i} \times 100 / p_{\text {tot }}$ C

A gas mixture composed of propane, butane and isobutane is contained in a cargo tank, at an absolute pressure of 10 bar (absolute). The partial pressures of the butane and isobutane are 2 bar (absolute) and 3 bar (absolute) respectively. What is the volume per cent of the propane?

A 30 volume per cent
B 40 volume per cent
C 50 volume per cent
D 60 volume per cent

Number	Source	Correct answer
G 2109	$p_{\text {tot }}=\Sigma p_{i}$ and Vol. $-\%=p_{i} \times 100 / p_{\text {tot }}$	D
	In a nitrogen/oxygen mixture at an absolute pressure of 20 bar (absolute), the partial pressure of the oxygen is 1 bar (absolute).	
	What is the volume per cent of the nitrogen?	
A $\quad 86$ volume per cent		
B $\quad 90$ volume per cent		
C $\quad 90.5$ volume per cent		
D $\quad 95$ volume per cent		

Knowledge of physics and chemistry

Examination objective 2.2: Gases: partial pressures and mixtures

Pressure increase and gas release from cargo tanks

Number	Source	Correct answer
G 2201	$p_{\text {tot }}=\Sigma p_{i}$ and Vol. $\%=p_{i} \times 100 / p_{\text {tot }}$ and $p * V=$ constant	B

A cargo tank contains a gas mixture composed of 80 volume per cent propane and 20 volume per cent butane at an absolute pressure of 5 bar (absolute). After pressure relief of cargo tanks (gauge pressure $=0$), the absolute pressure in the tank is increased to 4 bar (absolute). What is the volume per cent of the propane now?

A 16 volume per cent
B 20 volume per cent
C 25 volume per cent
D 32 volume per cent
$\mathrm{p}_{\text {tot }}=\sum p_{i}$ and Vol. $-\%=p_{i} \times 100 / p_{\text {tot }}$ and $p * V=\mathrm{constant}$ D

A cargo tank with a volume of $300 \mathrm{~m}^{3}$ contains isobutane at an overpressure of 0.5 bar (gauge). $900 \mathrm{~m}^{3}$ of propane is then also compressed into the tank. What is the volume per cent of the isobutane now?

A $\quad 11.1$ volume per cent
B $\quad 14.3$ volume per cent
C $\quad 20.0$ volume per cent
D $\quad 33.3$ volume per cent
$p_{\text {tot }}=\Sigma p_{i}$ and Vol. $\%=p_{i} \times 100 / p_{\text {tot }}$ and $p * V=\mathrm{constant}$ B

A cargo tank with a volume of $100 \mathrm{~m}^{3}$ contains a gas mixture composed of 50 volume per cent propane and 50 volume per cent propylene, at an overpressure of 5 bar (gauge). At constant pressure, $600 \mathrm{~m}^{3}$ of nitrogen is then also compressed into the tank at an absolute pressure of 1 bar (absolute). What is the volume per cent of the propane now?

A 23 volume per cent
B $\quad 25$ volume per cent
C 27 volume per cent
D 30 volume per cent

| Number \quad Source | Correct answer |
| :--- | :--- | :--- |

G $2204 p_{\text {tot }}=\Sigma p_{i}$ and Vol. $\%=p_{i} x$ 100/ $p_{\text {tot }}$ and $p * V=$ constant $\quad \mathrm{D}$
In a cargo tank filled with air (20 volume per cent oxygen), the gauge pressure of 0.20 bar is increased, using nitrogen, to a gauge pressure of 5.0 bar. What is the partial pressure of the oxygen in the cargo tank?

A 0.001 bar (absolute)
B 0.040 bar (absolute)
C 0.048 bar (absolute)
D 0.240 bar (absolute)

G 2205
$p_{\text {tot }}=\sum p_{i}$ and Vol. $-\%=p_{i} \times 100 / p_{\text {tot }}$ and $p * V=$ constant $\quad \mathrm{A}$
In a cargo tank filled with nitrogen there is low absolute pressure of 0.5 bar (absolute). An orifice is opened, and outside air containing 20 per cent oxygen enters. What is the partial pressure of the oxygen in the cargo tank?

A 0.1 bar (absolute)
B 0.2 bar (absolute)
C 0.4 bar (absolute)
D 1.0 bar (absolute)
G $2206 p_{\text {tot }}=\sum p_{i}$ and Vol. $\%=p_{i} x$ 100/ $p_{\text {tot }}$ and $p * V=$ constant
C
A cargo tank contains propane at an overpressure of 0.5 bar (gauge). Using nitrogen, the pressure in the cargo tank is increased to 5 bar (gauge). What is the volume per cent of the propane?

A 8 volume per cent
B $\quad 10$ volume per cent
C 25 volume per cent
D 30 volume per cent
G $2207 p_{\text {tot }}=\sum p_{i}$ and Vol. $-\%=p_{i} x 100 / p_{\text {tot }}$ and $p * V=\mathrm{constant}$
C

A cargo tank with a volume of $100 \mathrm{~m}^{3}$ contains propane at an overpressure of 0.5 bar (gauge). Using $450 \mathrm{~m}^{3}$ of nitrogen, pressure is increased to an overpressure of 1 bar (gauge). What is the volume per cent of the propane?

A 8 volume per cent
B $\quad 10$ volume per cent
C 25 volume per cent
D 30 volume per cent

Knowledge of physics and chemistry

Examination objective 3.1: Avogadro's number and calculation of masses of ideal gas
$\mathrm{kmol}, \mathrm{kg}$ and pressure at $15^{\circ} \mathrm{C}$

Number	Source	Correct answer
G 3101	1 kmol ideal gas $=\mathrm{M} \mathrm{kg}=24 \mathrm{~m}^{3}$ at 1 bar and $15^{\circ} \mathrm{C}$	B
	A cargo tank has a volume of $72 \mathrm{~m}^{3}$. The tank contains 12 kmol of an ideal gas at a temperature of $15^{\circ} \mathrm{C}$. What is the pressure?	
	A 3 bar (absolute)	
	B 4 bar (absolute)	
	C 5 bar (absolute)	
	D 6 bar (absolute)	
G 3102	1 kmol ideal gas $=\mathrm{M} \mathrm{kg}=24 \mathrm{~m}^{3}$ at 1 bar and $15^{\circ} \mathrm{C}$	A
	A cargo tank has a volume of $120 \mathrm{~m}^{3}$. The tank contains 10 kmol of an ideal gas at a temperature of $15^{\circ} \mathrm{C}$. What is the pressure?	
	A 2 bar (absolute)	
	B 4 bar (absolute)	
	C 5 bar (absolute)	
	D 12 bar (absolute)	
G 3103	1 kmol ideal gas $=\mathrm{M} \mathrm{kg}=24 \mathrm{~m}^{3}$ at 1 bar and $15^{\circ} \mathrm{C}$	B
	A cargo tank has a volume of $120 \mathrm{~m}^{3}$. The tank contains a certain quantity of an ideal gas at a temperature of $15^{\circ} \mathrm{C}$ and at an absolute pressure of 3 bar (absolute). What is the quantity of gas?	
	A $\quad 5 \mathrm{kmol}$	
	B $\quad 15 \mathrm{kmol}$	
	C $\quad 20 \mathrm{kmol}$	
	D $\quad 30 \mathrm{kmol}$	
G 3104	1 kmol ideal gas $=\mathrm{M} \mathrm{kg}=24 \mathrm{~m}^{3}$ at 1 bar and $15^{\circ} \mathrm{C}$	A
	In a cargo tank, there is a leakage of $120 \mathrm{~m}^{3}$ of gas UN No. 1978 PROPANE $(\mathrm{M}=44)$ at a pressure of 1 bar and at a temperature of $15^{\circ} \mathrm{C}$. How many kg of propane gas leak into the atmosphere?	

Number	Source	
	A	220 kg
B	440 kg	
C	$2,880 \mathrm{~kg}$	
D	$5,280 \mathrm{~kg}$	

G 31051 kmol ideal gas $=\mathrm{M} \mathrm{kg}=24 \mathrm{~m}^{3}$ at 1 bar and $15^{\circ} \mathrm{C}$ B

A cargo tank has a volume of $240 \mathrm{~m}^{3}$. How much gas UN No. 1969 ISOBUTANE $(\mathrm{M}=58)$ is there in the cargo tank when the temperature is $15^{\circ} \mathrm{C}$ and the absolute pressure is 2 bar (absolute)?

A $\quad 580 \mathrm{~kg}$
B $\quad 1,160 \mathrm{~kg}$
C $\quad 1,740 \mathrm{~kg}$
D $\quad 4,640 \mathrm{~kg}$
G 31061 kmol ideal gas $=\mathrm{M} \mathrm{kg}=24 \mathrm{~m}^{3}$ at 1 bar and $15^{\circ} \mathrm{C}$
C
A cargo tank has a volume of $240 \mathrm{~m}^{3}$. How much gas UN No. 1978 PROPANE ($\mathrm{M}=42$) is there in the cargo tank when the temperature is $15^{\circ} \mathrm{C}$ and the absolute pressure is 3 bar (absolute)?

A $\quad 210 \mathrm{~kg}$
B $\quad 420 \mathrm{~kg}$
C $\quad 630 \mathrm{~kg}$
D $\quad 840 \mathrm{~kg}$
G 31071 kmol ideal gas $=\mathrm{M} \mathrm{kg}=24 \mathrm{~m}^{3}$ at 1 bar and $15^{\circ} \mathrm{C}$
B
A cargo tank has a volume of $120 \mathrm{~m}^{3}$. The tank contains 440 kg of gas UN No. 1978 PROPANE $(M=44)$ at a temperature of 15°
C. What is the pressure?

A $\quad 1$ bar (absolute)
B 2 bar (absolute)
C 11 bar (absolute)
D 12 bar (absolute)
G3108 1 kmol ideal gas $=\mathrm{M} \mathrm{kg}=24 \mathrm{~m}^{3}$ at 1 bar and $15^{\circ} \mathrm{C} \quad \mathrm{D}$
A cargo tank with a volume of $100 \mathrm{~m}^{3}$ contains 30 kmol of gas UN No. 1978 PROPANE at a temperature of $15^{\circ} \mathrm{C}$. What is the maximum quantity $\left(\mathrm{m}^{3}\right)$ of propane gas at an absolute pressure of 1 bar (absolute) that could leak?

A $\quad 180 \mathrm{~m}^{3}$
B $\quad 380 \mathrm{~m}^{3}$
Number Source Correct answer

C $\quad 420 \mathrm{~m}^{3}$
D $\quad 620 \mathrm{~m}^{3}$
G 31091 kmol ideal gas $=\mathrm{M} \mathrm{kg}=24 \mathrm{~m}^{3}$ at 1 bar and $15^{\circ} \mathrm{C}$
C
A cargo tank contains 10 kmol of an ideal gas at a temperature of $15^{\circ} \mathrm{C}$ and an absolute pressure of 5 bar (absolute). What is the volume of the cargo tank?
A $\quad 12 \mathrm{~m}^{3}$
B $\quad 40 \mathrm{~m}^{3}$
C $\quad 48 \mathrm{~m}^{3}$
D $\quad 60 \mathrm{~m}^{3}$
G $3110 \quad 1 \mathrm{kmol}$ ideal gas $=\mathrm{M} \mathrm{kg}=24 \mathrm{~m}^{3}$ at 1 bar and $15^{\circ} \mathrm{C} \quad \mathrm{C}$
A cargo tank has a volume of $288 \mathrm{~m}^{3}$. The tank contains an ideal gas at an absolute pressure of 4 bar (absolute). What is the quantity of gas in the cargo tank?

A $\quad 24 \mathrm{kmol}$
B $\quad 36 \mathrm{kmol}$
C $\quad 48 \mathrm{kmol}$
D $\quad 60 \mathrm{kmol}$

Knowledge of physics and chemistry

Examination objective 3.2: Avogadro's number and calculation of masses of ideal gas

Application of the mass formula

Number	Source	Correct answer
G 3201	$m=12 * p * M * V / T$	B

A cargo tank has a volume of $200 \mathrm{~m}^{3}$. What quantity (kg) of UN No. 1005 AMMONIA, ANHYDROUS ($\mathrm{M}=17$) is in the tank when the temperature is $40^{\circ} \mathrm{C}$ and the absolute pressure is 3 bar (absolute)?

A $\quad 261 \mathrm{~kg}$
B $\quad 391 \mathrm{~kg}$
C $\quad 2,040 \mathrm{~kg}$
D $\quad 3,060 \mathrm{~kg}$
$m=12 * p * M * V / T$
A
A cargo tank has a volume of $100 \mathrm{~m}^{3}$. What quantity (kg) of UN No. 1010 BUTADIENES-1-2, STABILIZED ($\mathrm{M}=54$) is in the tank when the temperature is $30^{\circ} \mathrm{C}$ and the absolute pressure is 2 bar (bar absolute)?

A $\quad 428 \mathrm{~kg}$
B $\quad 642 \mathrm{~kg}$
C $\quad 4,320 \mathrm{~kg}$
D $\quad 6,480 \mathrm{~kg}$
G $3203 m=12 * p * M * V / T$ B

A cargo tank has a volume of $100 \mathrm{~m}^{3}$. What quantity (kg) of UN 1978 PROPANE $(\mathrm{M}=44)$ is in the tank when the temperature is $20^{\circ} \mathrm{C}$ and the absolute pressure is 3 bar (absolute)?

A $\quad 360 \mathrm{~kg}$
B $\quad 541 \mathrm{~kg}$
C $\quad 5,280 \mathrm{~kg}$
D $\quad 7,920 \mathrm{~kg}$
G $3204 m=12 * p * M * V / T$
C
A cargo tank has a volume of $200 \mathrm{~m}^{3}$. What quantity (kg) of UN 1077 PROPYLENE $(\mathrm{M}=42)$ is in the tank when the temperature is $-5^{\circ} \mathrm{C}$ and the absolute pressure is 2 bar (absolute)?

A $\quad 376 \mathrm{~kg}$
B $\quad 725 \mathrm{~kg}$
Number Source Correct answer

C $\quad 752 \mathrm{~kg}$
D $\quad 1,128 \mathrm{~kg}$
G $3205 m=12 * p * M * V / T$
A
A cargo tank has a volume of $200 \mathrm{~m}^{3}$. What quantity (kg) of UN 1969 ISOBUTANE $(\mathrm{M}=56)$ is in the tank when the temperature is $40^{\circ} \mathrm{C}$ and the absolute pressure is 4 bar (absolute)?

A $\quad 1,718 \mathrm{~kg}$
B $\quad 2,147 \mathrm{~kg}$
C $\quad 10,080 \mathrm{~kg}$
D $\quad 12,600 \mathrm{~kg}$
G $3206 m=12 * p * M * V / T$ or $p=m * T /(12 * M * V)$
D
A cargo tank has a volume of $300 \mathrm{~m}^{3}$. The tank contains $2,640 \mathrm{~kg}$ of gas UN No. 1978 PROPANE ($\mathrm{M}=44$) at a temperature of $7^{\circ} \mathrm{C}$. What is the pressure in the cargo tank?

A 0.1 bar (absolute)
B 1.1 bar (absolute)
C $\quad 3.0$ bar (absolute)
D 4.0 bar (absolute)
$m=12 * p * M * V / T$ or $p=m * T /(12 * M * V)$
D
A cargo tank has a volume of $100 \mathrm{~m}^{3}$. The tank contains $1,176 \mathrm{~kg}$ of gas UN No. 1077 PROPYLENE ($\mathrm{M}=42$) at a temperature of $27^{\circ} \mathrm{C}$. What is the pressure in the cargo tank?

A 0.6 bar (absolute)
B $\quad 1.9$ bar (absolute)
C 6.0 bar (absolute)
D 7.0 bar (absolute)
G $3208 m=12 * p * M * V / T$ or $p=m * T /(12 * M * V)$
C
A cargo tank has a volume of $450 \mathrm{~m}^{3}$. The tank contains $1,700 \mathrm{~kg}$ of gas UN No. 1005 AMMONIA ($\mathrm{M}=17$) at a temperature of $27^{\circ} \mathrm{C}$. What is the pressure in the cargo tank?

A 0.5 bar (absolute)
B $\quad 1.5$ bar (absolute)
C 5.6 bar (absolute)
D 6.6 bar (bar absolute)
G $3209 \quad m=12 * p * M * V / T$ or $p=m * T /(12 * M * V) \quad$ D
A cargo tank has a volume of $250 \mathrm{~m}^{3}$. The tank contains $1,160 \mathrm{~kg}$ of gas UN No. 1011 BUTANE $(\mathrm{M}=58)$ at a
temperature of $27^{\circ} \mathrm{C}$. What is the pressure in the cargo tank?
A 0.2 bar (absolute)
B $\quad 1.0 \mathrm{bar}$ (absolute)
C 1.2 bar (absolute)
D 2.0 bar (absolute)
G $3210 m=12 * p * M * V / T$ or $p=m * T /(12 * M * V)$ D

A cargo tank has a volume of $200 \mathrm{~m}^{3}$. The tank contains $2,000 \mathrm{~kg}$ of gas UN No. 1068 VINYL CHLORIDE (M=62.5) at a temperature of $27^{\circ} \mathrm{C}$. What is the pressure in the cargo tank?

A 0.4 bar (absolute)
B $\quad 1.4$ bar (absolute)
C 3.0 bar (absolute)
D 4.0 bar (absolute)

[^0]: ${ }^{1}$ Distributed in German by the Central Commission for the Navigation of the Rhine under the symbol CCNR/ZKR/ADN/WP.15/AC.2/2009/34.

