TEG-055

First Technology Safety Systems

Design Freeze Status

FLEX-PLI-GTR Development Instrumentation and Electrical Design

Bernard Been FTSS Europe Comments addressed from Design Freeze meeting February 20th 2008, JARI, Tsukuba, Japan Update February 29th, 2008

Introduction

Channel	Purpose	Standard	Option	DAS	Priority
Femur moment 1, 2 and 3	Calibration	3	0	Standard option On board DAS	
Tibia moment 1, 2, 3 and 4	Injury	4	0		
Tibia top acceln ax	Calibration	1	-1		
MCL elongation	Injury	1	0		
ACL elongation	Calibration	1	0		
PCL elongation	Calibration	1	0		
LCL elongation	Calibration	1	0		
Tibia top acceln ax, ay, az	Motion	0	3	optional	1
Femur bottm acceln ax, ay, az	Motion	0	3	on board if	1
Tibia angular rate ωx , ωy , ωz	Motion	0	3		2
Femur angular rate ωx , ωy , ωz	Motion	0	3	feasibl	2
Femur top acceln ax, ay, az	Motion	0	3	Lab	3
Tibia bottom acceln ax, ay, az	Motion	0	3	Lab	3
Segment acceln ax	Research	0	15	Lab	4
Total		12	32		

FLEX-PLI-GTR Development, January 22, 2008

Strain Gauges and Wiring

- Kyowa KFRP-2-350-C1
- Uni-axial, 2mm length, 350 Ohm
- Base size 5x10mm
- Kyowa: please check the JARI specs
- Open issues:
 - Wires type selection
 - Adhesive selection
 - How to fix leads and bridge resistors

Form: 07-163

Revision: A 16 - May 07

Packaging ligament elongation stringpots

Single axis accelerometer <u>x-direction for certification</u>

- Mounted behind Nylon Impact Cover
- Threaded metal inserts to enable thread repair
- Measurement specialties M62, Endevco 7264, Kyowa?

FLEX-PLI-GTR Development, February 29th, 2008

Form: 07-163 Revision: A 16 - May 07

Packaging Connectors & Wiring

Wiring Diagram Tibia 51 pin

Wiring Diagram Femur 51 pin

Connectors and wiring may need to be tailored DAS specific

Form: 07-163 Revision: A 16 - May 07

Connectors agreed

single channel

multi channel

Cables agreed

- Cables will influence free flight motion
- How much is highly dependent on test set up wire routing
- Wire gauge is a trade off:
 - thinner wires will easily damage
 - Thicker wires/cables will influence free flight accuracy
- We have to route 50 wires out, without compromising flexibility, the common practice is to use several smaller cables instead of a large one
- We propose three 21 conductor cables, each of which has a diameter of 4 mm
- MSC Cable sample was send to JARI and agreed during the meeting

Detail Design Issues

- Detail design wire count and connectors in collaboration with DAS application
- Optimized wire routing and wire lengths
 - Allow for motion and stretching of wires
 - Wire clamping provisions
- Mark bone for assembly position reference
- Rounded edges in wire route
- Colour coded cables
- PCB design of standard features
- Wiring diagrams

Schedule, future activities, etc.

- Inform FLEX-TEG members development status end February
- Drawings February 22nd mid April
- 6th FLEX-PLI-TEG meeting, March 31stGermany
- Prototype Manufacturing 1st April 28st July
- Prototype Testing and calibration 29 July- End September
- GTR prototype Delivery End September 2008

Design frozen!

FLEX-PLI-GTR Development, February 29th, 2008

Form: 07-163 Revision: A 16 - May 07

