
Research Activities of HFCV Rule-making in Korea

Sept. 24 ~ 26, 2008

Ministry of Land, Transport and Maritime Affairs,
Korea Transportation Safety Authority
(Korea Automobile Testing and Research Institute)

Research Period and Budget

- □ Title : Development of Safety Assessment Procedures of HFCV
- □ Research Period : Dec. 2007 ~ Sept. 2012 (4 years and 9 months)
 - 1st year : Dec. 2007 ~ Sept. 2008 (9 months)
 - 2nd year : Oct. 2008 ~ Sept. 2009 (1 year), ...
- ☐ Total Budget: \$30 million (Government \$15million, Industry \$15million)
 - 1st year : \$3million
 - 2nd year : \$4million
- Main Research Institute : KATRI
 - Cooperation with 5 universities, 2 industries and 1 public corporation

Organization for HFCV Research

KATRI

(Korea Automobile Testing & Research Institute)

Rulemaking, Policy and Harmonization

Hydrogen Safety

Vehicle Operation Safety

Electric Safety

- Analysis of recent trend of regulation system and policy for HFCV
- International harmonization of safety standards for HFCV
- Advanced research for safety management, rescue system and recycling plan

- Research for hydrogen storage and supply system
- Safety assessment of vehicle safety from charge station while charging
- Assessment of HFCV in compliance with safety standards
- Research for fail safety mode of HFCV
- Research for electric safety of high-voltage and fuel cell system
- Research for electromagnetic compatibility in electrical/ electronic and fuel cell system

Rulemaking, Policy and Harmonization

- Analysis of Recent Trend of Regulation System and Policy for HFCV
 - Analysis of foreign regulation system such as Europe, USA and Japan
 - Examination of compatibility of fuel cell components for vehicle application
 - Investigation of development status of HFCV and hydrogen fueled vehicle in domestic and foreign automobile manufacturers
- International Harmonization of Safety Standards for HFCV
 - Participate in HFCV-SGE, SGS and ELSA activities for harmonization work with HFCV GTR
 - Develop instruction manual to secure safety at emergency
- Advanced Research for Safety Management, Rescue System and Recycling Plan
 - Create documents for educational and P.R (Public Relation) purposes
 - Research for environmentally friendly recycling plan

Hydrogen safety

- Research for Hydrogen Storage and Supply System
 - Hydrogen leak test
 - Leak detection by sensor, pressure gage and flow meter
 - Research for Position of sensor installation and detection range
 - Flow dynamics of hydrogen leak in the underground parking lot
 - Safety standards for allowable hydrogen leak
- Safety Assessment of Vehicle Safety from Charge Station while Charging
 - Analysis of accident data and modeling results
 - Development of hydrogen charging process

Vehicle Operation Safety (1/2)

- Assessment of HFCV in Compliance with Safety Standards
 - Analysis of current domestic and foreign safety standards for HFCV
 - Occupant crash protection, fuel leakage in collision, engine power, windshield wiping and defrosting system, accelerator control, fuel economy
 - Develop new safety standards for HFCV
 - Fuel cell power output, electric motor power output, installation standard for high-pressure pipeline, high voltage safety
 - Establish necessary safety standards and detailed regulation for application for HFCV
 - Prepare compliance test for each test item
 - Develop a method to measure fuel efficiency for passenger vehicle/bus

Vehicle Operation Safety (2/2)

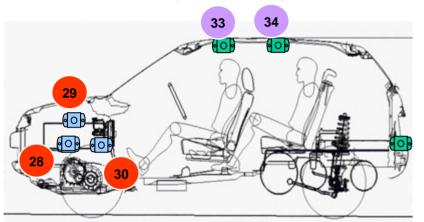
Research for the Fail Safety Mode of HFCV

1. Search references and necessary documents

4. Analysis of potential fail safety

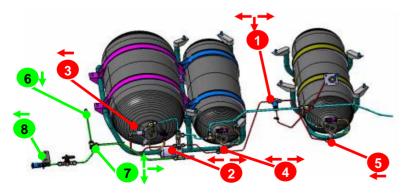
- 2. System definition
- System component
- Operating condition

- 3. Analysis of fail safety mode
- Electrical and mechanical malfunction mode
- Air-tightness of fuel cell stack
- Performance of fuel cell stack with tilted position
- High voltage components safety


Electric Safety

- Assessment of Electric Safety
 - Research for electrical characteristics of fuel cell stack
 - Electric safety of high voltage in HFCV
 - Safety standards for insulation of high-voltage system
 - Occupant protection against high voltage system in HFCV
 - Establish safety standards for application of electric safety
- Assessment of Electromagnetic Compatibility (EMC)
 - Investigation of electromagnetic wave emitted from fuel cell vehicles & parts
 - Refer to noise analysis data from diesel/gasoline/hybrid
 - Analysis of electromagnetic wave on electrical/electrical system in HFCV
 - Examine potential danger directly related to safety issue and find solutions

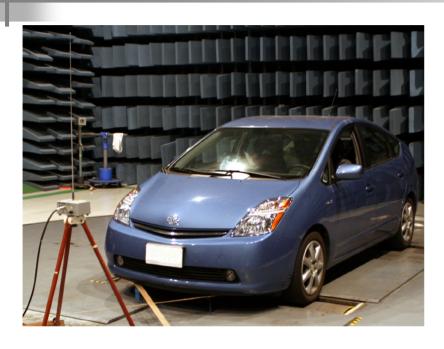
1st Year's Results (Hydrogen Safety)

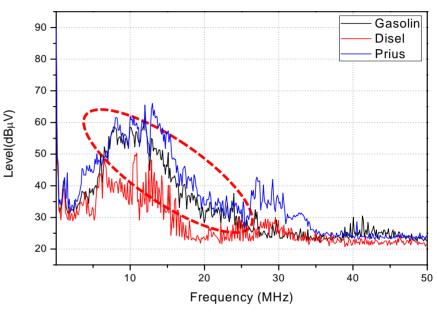

Positions of hydrogen leakage test sensor

■ Expected Hydrogen Leakage Points (High/Low pressure line and engine room)

- ☐ Outcome : Establishment of Hydrogen Leakage Assessment Technique
 - Prepare hydrogen leakage simulation equipment and mock-up vehicle
 - Build comprehensive test facility for fire safety
 - Build measurement system of hydrogen consumption
 - Develop fuel cell NVH/impact assessment system
 - Assess performance and durability of hydrogen leakage sensor

1st Year's Results (Vehicle Operation Safety)




- Outcome: Test Results from Fuel Efficiency and Fuel-cell Stack Stability
 - Perform coast down test for driving resistance data
 - Obtain basic data for dynamometer input for fuel consumption test
 - Establish measurement system of hydrogen consumption rate
 - Basic study of fail safety mode in HFCV

1st Year's Results (Electric Safety)

■ Outcome : Noise and EMC analysis

- Noise analysis in the low frequency band (below 30MHz)
- EMC research in HFCV and electrical system
- Develop methodology of the electric safety assessment

2nd Year's Research Plans

- □ Rulemaking, Policy and Harmonization
 - Participate in HFCV-SGE, SGS and ELSA activities
 - Analyze severe crash accident data in Korea
- □ Hydrogen Safety
 - Find installation position of container and valves
 - Prepare mock-up for rear impact test
- Vehicle Operation Safety
 - Develop a method to measure fuel efficiency
 - Develop a test method of fail safety mode
- □ Electric Safety
 - Analysis of electromagnetic compatibility in HFCV
 - Analysis of electric shock and fire possibilities, etc

