CRS-06-05

Side Impact Child Dummy Development

Alena V. Hagedorn Transportation Research Center Inc. Under contract to NHTSA's Vehicle Research & Test Center (VRTC)

Overview

- Side Child Dummy Concepts
- > Biofidelity Evaluation Preliminary Review
- > Development of Certification Procedures
- > Preliminary Durability Concerns
- Current Developments
- Future Work

Overview

- Side Child Dummy Concepts
- > Biofidelity Evaluation Preliminary Review
- > Development of Certification Procedures
- > Preliminary Durability Concerns
- Current Developments
- > Future Work

Side Child Dummy Concepts

- NHTSA evaluating two dummies
- ► Q3s

Hybrid III 3 year-old with modified head/neck (HIII-3Cs)

Side Child Dummy Concepts

- Q3s Dummy
- Key Features
 - new fiberglass skull
 - improved shoulder design
 - improved pelvis design
 - improved arm design
- ▹ OSRP and NHTSA

Side Child Dummy Concepts Hybrid III 3Cs

> History/Development

Overview

- Side Child Dummy Concepts
- > Biofidelity Evaluation Preliminary Review
- > Development of Certification Procedures
- > Preliminary Durability Concerns
- Current Developments
- > Future Work

Biofidelity Evaluation

Frontal Drop
Ref: Irwin (Stapp 973317)
- 376 mm drop
- peak resultant: 255 – 315 g

- Lateral Drop
- Ref: Irwin (Stapp 2002-22-0016)
- 200 mm drop
- 114 171 g, measured at non-struck side
- 94 141 g, measured at CG

Brussels Oct. 7, 200

Biofidelity References
 Lateral: Irwin (Stapp 2002-22-0016)
 Frontal: Irwin (Stapp 973317)
 Torsion: Mertz, personal communication

Evaluation Methods: •Standard neck pendulum •Modified neck pendulum •Head/neck sled tests

Neck Pendulum Pulse Duration Considerations

Head/Neck Sled Tests – allows for longer pulses

Results

Standard Neck Pendulum

Standard Neck FLEXION Pendulum Results

n Child

Standard Neck EXTENSION Pendulum Results

Standard LATERAL Neck FLEXION Pendulum Results

Standard Neck TORSION Pendulum Results

Brussels Oct. 7, 2008

Results Modified, Long Pulse Neck Pendulum

Q3s LONG PULSE Neck FLEXION Pendulum Results

3Cs LONG PULSE Neck FLEXION Pendulum Results

Q3s LONG PULSE LATERAL Neck Pendulum Results

Brussels Oct. 7, 2008

3Cs LONG PULSE LATERAL Neck Pendulum Results

Results Head/Neck Sled Tests

Q3s NECK X-MOMENT Head/Neck Sled Test Results

3Cs NECK X-MOMENT Head/Neck Sled Test Results

Reference #1: Irwin (Stapp 2002-22-0016) Lateral impact 1.7 kg impactor at 4.5 m/s Reference #2: Bolte (Stapp 2003-22-0003) Lateral & oblique padded impact 1.7 kg impactor at 4.5 m/s

Results Irwin Impact

Irwin shoulder impact

Brussels Oct. 7, 2008

-

time (msec)

50

Irwin shoulder impact

Results Bolte Test Padded Shoulder Impacts

estraint Systems russels Oct. 7, 2008

Thorax Biofidelity

Reference: Irwin (Stapp 2002-22-0016) Lateral impact to thorax w/ 1.7 kg impactor at 4.3 and 6.0 m/s

Thorax Biofidelity

Restraint Systems Brussels Oct. 7, 2008

Thorax Biofidelity

Abdomen Biofidelity

Reference: FTSS White Paper "Pendulum Response Corridors for 3 year-old Child Side Impact Dummies." Moss and Elhagediab. 2001

■ 30° oblique impact to abdomen w/ 3.8 kg impactor at

4.8 and 6.8 m/s

Abdomen Biofidelity

Abdomen Biofidelity

Brusse

ssels Oct. 7, 2008.

Pelvis Biofidelity

Reference: Irwin (Stapp 2002-22-0016)

Lateral impact to pelvis w/ 2.27 kg impactor at 4.5 m/s

Pelvis Biofidelity

www.nhtsa.gov Brussels (

Preliminary Biofidelity Analysis

issels Oct. 7, 2008

Overview

- Side Child Dummy Concepts
- > Biofidelity Evaluation Preliminary Review
- > Development of Certification Procedures
- > Preliminary Durability Concerns
- Current Developments

> Future Work

Certification Procedures

Adapted procedures to use Bench Seat
Developed a Thorax with Arm Test
Introduced Increased Mass Impactor

www.nhtsa.gov Diussels Oct. 7, 2000

Overview

- Side Child Dummy Concepts
- > Biofidelity Evaluation Preliminary Review
- Development of Certification Procedures
- > Preliminary Durability Concerns
- Current Developments
- > Future Work

• Thorax damage observed in two different dummies

www.nhtsa.gov Bru

- Reinforce the rib cage with spring steel or Nitinol
- Soften the plastic material
- Reduce the strain level

Informal Group on Child Restraint Systems Brussels Oct. 7, 2008

8/15/2008

Overview

- Side Child Dummy Concepts
- > Biofidelity Evaluation Preliminary Review
- Development of Certification Procedures
- > Preliminary Durability Concerns
- Current Developments

> Future Work

Current Developments

Improve Q3s thorax durability
 Improve femur issues
 Incorporate 3Cs neck design into the Q3s dummy

Overview

- Side Child Dummy Concepts
- > Biofidelity Evaluation Preliminary Review
- Development of Certification Procedures
- > Preliminary Durability Concerns
- Current Developments
- Future Work

Future Work

Evaluate improvements □ Thorax **Femur**/Pelvis Finalize certification procedures and assess repeatability & reproducibility of responses

Conduct sled tests for additional biofidelity assessment

Technical Contacts for this Work

Alena Hagedorn TRC Inc. under contract to NHTSA/VRTC alena.hagedorn@dot.gov

Dan Rhule NHTSA/VRTC dan.rhule@dot.gov

