Informal document No. **GRRF-63-36** (63rd GRRF, 4-8 February 2008, agenda item 3(g))

Creating the future of transport

www.trl.co.uk

Brake Assist Systems – Rationale for the proposed requirements

Presented by Ian Knowles & Iain Knight

UNECE GRRF

6th/7th February 2008

Introduction

The pedestrian protection Directive

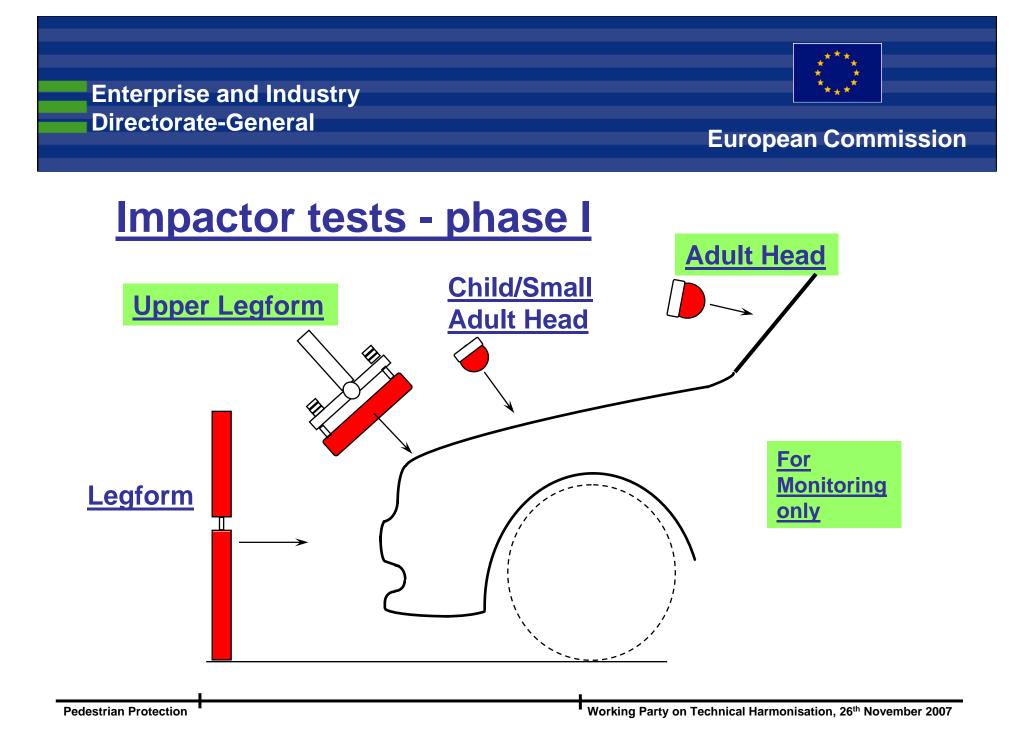
- Original proposal
- Feasibility
- The active safety alternative
- Why Brake Assist?

Proposed Brake Assist requirements

- Definitions of categories
- Requirements for category A
- Requirements for category B & C

European Commission

Pedestrian Protection and Brake Assist


- Existing Pedestrian protection Directive
- Feasibility work
- Current Proposal by Commission
- The contribution of 'Brake Assist'

European Commission

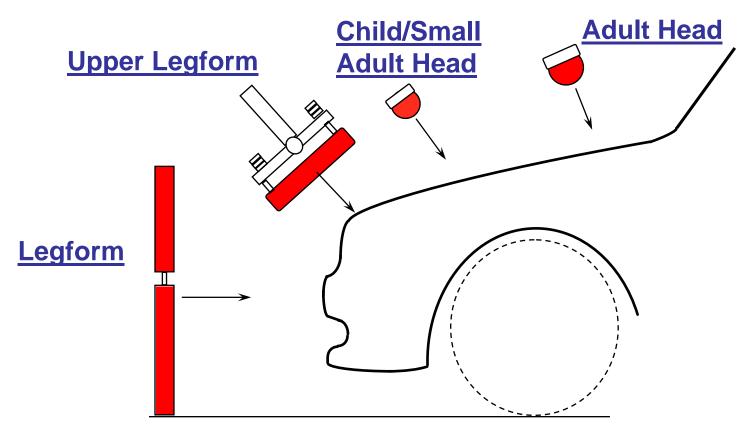
Commission Directive 2003/102/EC

Phase I:

- all new vehicle types from 2005
- all new vehicles from 2012
- Four tests (two for monitoring)

European Commission

Commission Directive 2003/102/EC


Phase II (original):

- all new vehicle types from 2010
- all new vehicles from 2015
- Four tests
- subject to feasibility

European Commission

Impactor tests - phase II

European Commission

Consideration of Feasibility

Directive, Article 5

".....shall carry out, by 1 July 2004, an independent feasibility assessment concerning the provisions of [Phase II] and in particular alternative measures - either passive or a combination of active and passive measures - which are at least equivalent in terms of actual effectiveness."

European Commission

The 'Active Safety' Alternative

- Active safety systems can reduce risk of collision occurring or reduce severity if collision does occur.
- Systems could include advanced lighting systems, collision avoidance or Brake Assist
- Can be used in conjunction with passive safety systems

European Commission

Why Brake Assist?

- Technology already available
- Reduces vehicle speed at point of impact
- Allows vehicle testing to take place at lower equivalent speed (compared with original Phase II) without losing safety benefits.

European Commission

Early Feasibility Studies:

Commission study(2004):

- feasibility changes only, providing 79% effectiveness
- using Brake Assist provides up to 85% effectiveness

Industry studies(2004): (ACEA & JAMA)

- feasibility changes required
- using Brake Assist provides up to 133% effectiveness

Commission Addendum study(2005):

- use of Brake Assist can provide up to 116% effectiveness

European Commission

Final Feasibility Study(2006):

Estimations of Casualties saved

		Existing Phase II in Directive		Commission Proposal	
		Fatal	Serious	Fatal	Serious
no BAS	Nos.	626	32,246	366	24,060
	%	100	100	58	75
BAS fitted	Nos.	n.a.	n.a.	1,128	46,550
	%	n.a.	n.a.	180	144

Pedestrian Protection

Working Party on Technical Harmonisation, 26th November 2007

European Commission

New Proposal on Phase II:

Provides for:

- improved feasibility in testing
- the use of 'Brake Assist'
- a wider vehicle scope

- resultant increase in level of

Working Party on Technical Harmonisation, 26th November 2007

European Commission

New Commission Proposal:

Brake Assist Systems:

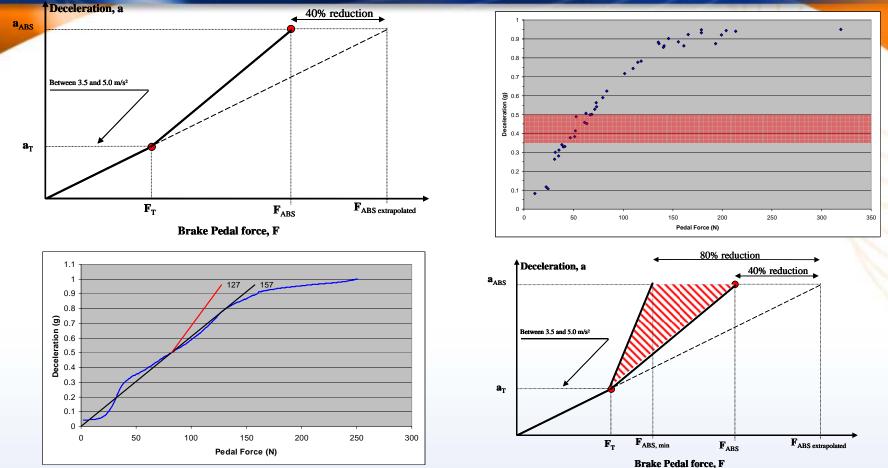
- Early application of requirement.
- Provide appropriate means to verify the existence of Brake Assist in the vehicle.
- Adapt UNECE Regulation 13H to introduce necessary certification procedure (GRRF 2008/2.)

Proposed requirements for BAS

• TRL research objectives:

- Prepare a finalised technical proposal for inclusion in R13H
- Based on a technical proposal from ACEA as modified by the EC

Categories of BAS

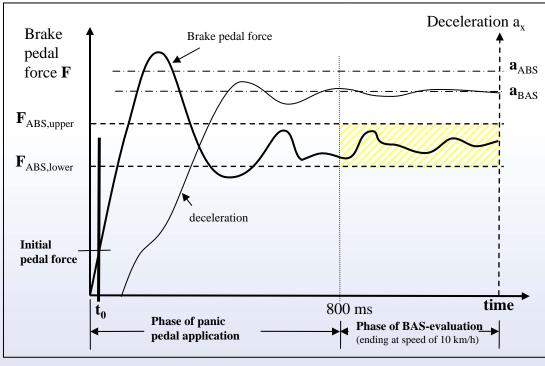

Requested information from industry

- Type of BAS fitted to their vehicles
- Activation criteria and thresholds
- Original ACEA proposal defined two BAS categories:
 - Pedal force sensitive
 - Pedal speed sensitive
- Replies from four manufacturers concerning 14 different BAS revealed three distinct types

brake pressure gradient / brake pedal		
speed	vehicle speed	pedal travel

Activation criteria	Action
Pedal force	Increased pedal force : deceleration ratio
Pedal speed	Boost to maximum (ABS)
Multiple criteria (e.g pedal force, pedal speed & vehicle speed)	Boost to maximum (ABS)

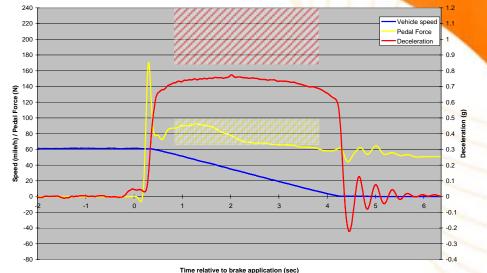
Evaluation of proposed test for force sensitive BAS

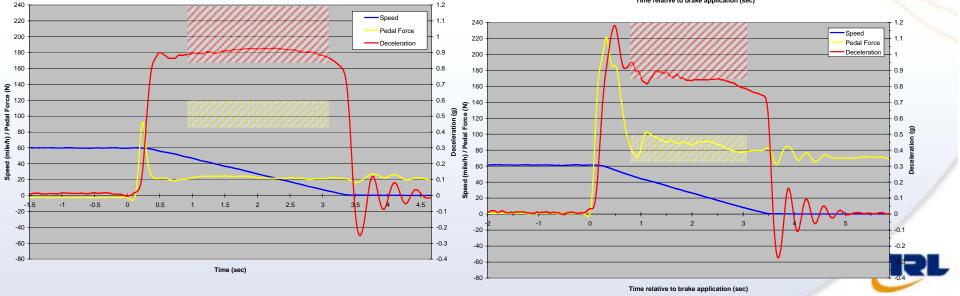

- ACEA method successfully "failed" car with no BAS
- Proposed upper limit to maintain graduated braking
- Both Activation and Action are controlled

Evaluation of proposed test for speed sensitive BAS

ACEA original proposal

- Pedal to be applied according to manufacturer's instruction
 - Activation not controlled by the test
- ABS braking to be maintained despite drop in pedal force when activation criteria are met


• Assistance action is controlled by the test

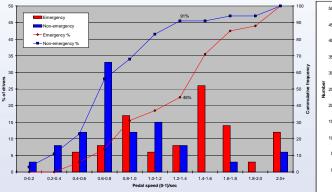


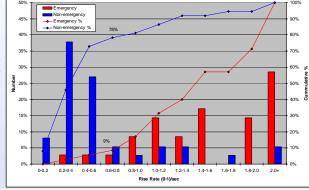
Results from different BAS

Requirements not met when activation criteria not met

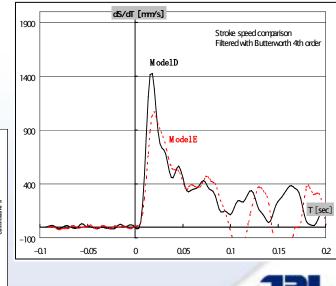
- One system failed to meet proposed requirements
 - Proposal will increase the amount of assistance for some vehicles
- One system comfortably exceeded requirement
- Requirements can be applied to multi-criteria systems

Evaluation of proposed test for speed sensitive BAS


- ACEA proposal is an effective test of the presence of BAS and adequately defines the extent of assistance action that is provided
- The same test method can be applied to detect the presence and control the assistance of systems based on pedal speed activation and systems that base activation on multiple criteria
- However, the test does not control the conditions in which the BAS will activate



Control of activation criteria for speed sensitive and multi-criteria BAS


Ideally, activation criteria should also be controlled but:

- Pedal stiffness/travel (pedal "feel") varied considerably
- Drivers apply the brakes differently, according to "feel"
 - Long travel, low stiffness = faster application
 - Short travel, high stiffness = slower application
 - Range for systems from 4 manufacturers ~ 90 600mm/s
- Universal limit values for pedal speed would either:
 - Be so wide ranging as to be meaningless
 - Require pedal "feel" to be standardised very difficult
 - Result in some vehicles with ineffective BAS
- Vehicle speed criteria controllable with additional lower speed test(s) but accuracy & repeatability reduced. Results indicated pedal speed was dominant input

Control of activation criteria for speed sensitive and multi-criteria BAS

- In the absence of direct control of activation criteria, collection of relevant information has been proposed to enable monitoring of trends and new developments, and future effectiveness research
- Information requested on:
 - System category,
 - Evidence of research to demonstrate appropriate activation
 - Activation criteria
 - Limit values and relationships between different variables

Conclusions

- Proposed requirements based mainly on the ACEA proposal with minor modifications/format changes.
- 3 Categories of BAS defined, pedal force (A), pedal speed (B), multiple (C), but same test applied for B & C
- For category A, both activation and assistance action are controlled.
- For category B and C only assistance action is controlled
 - No simple objective test could be found for activation
 - Information requirements proposed to monitor developments

End of Presentation

Presented by Ian Knowles & Iain Knight

Email: iknight@trl.co.uk

Simulator results

 Theoretical assessment of collision speeds based on mean performance of typical drivers in a simulator

	Time to max	Max	Initial	Distance to	Estimated
	deceleration	deceleration	Speed	impact at point	collision speed
System	(S)	(m/s/s)	(km/h)	of braking (m)	(km/h)
No BAS	0.93	9.60	100	48	32
Category A BAS	0.63	9.58	100	48	13
Category B BAS	0.60	9.63	100	48	0
No BAS	0.93	9.60	50	14	21
Category A BAS	0.63	9.58	50	14	8
Category B BAS	0.60	9.63	50	14	0

