The Relation between Targets for Noise Emission and Public Health

Martin van den Berg Ministry of Environment Netherlands Working Group Assessment of Exposure to Noise WHO advisor

Contents

Stress model

Effects with sufficient evidence

- Effects on sleep
- Use of health effects in policy making
 - WHO Burden of Disease project
 - Limit values & emission targets

Stress model

Effects of noise on health and wellbeing

Threshold levels for effects for which sufficient evidence*) is available

Effect	Where	Indicator	Level	
Hearing damage	Work	LAeq, 8hr>	75	inside
	Sport	LAeq, 24 hr>	70	inside
Hypertension	Work	LAeq, 8 hr>	80	inside
	Home	LAeq, 16hr>	55	outside
Cardio-vasculair	Home	LAeq,16hr>	60	outside
Sleep disturbance	Home	Lnight	30	outside
Annoyance	Home	Lden	42	outside
Learning	School	LAeq, 12 hr>	60	outside

*) According to IARC-criteria

Dose-effect relations road traffic noise

No PE

Effects on health and well-being during sleep

Sleep quality	 Reduced perceived sleep quality Difficulty getting to sleep, difficulty staying Sleep fragmentation, reduced sleeping tin Increased average motility when sleeping 	Sufficient evidenceasleepSufficient evidenceneSufficient evidenceSufficient evidence	
Well being	 Sleep disturbance Health problems Use of somnifacient drugs and sedatives Increased daytime irritability Impaired social contacts Impaired cognitive performance 	Sufficient evidence Sufficient evidence Sufficient evidence Limited evidence, plausible Limited evidence, plausible	
Medical	InsomniaHypertensionDepression (in women)	Sufficient evidence Limited, indirect evidence, plausib Limited, indirect evidence, plausib	le le
Premature mortality	Cardiovascular diseaseOccupational accidents	Limited, indirect evidence, plausible Limited, indirect evidence, plausible	

Burden of CVD from road traffic noise

- Meta-analyses by Babisch
 - Exposure: Road traffic noise (Lday)
 - Outcome: Myocardial infarction
 - ER relation: pooled from case-control and cohort studies
- Impact fractions in countries with available exposure data
- Estimate DALYs for EURO subregions by extrapolation

DALY for IHD from road traffic noise in Europe

Assumptions

- Similar exposure patterns in industrialized countries
- Sub-regional impact fraction = 3%
- Same effects on men and women
- Same ER relations for all IHD
- EBD from noise = Impact fraction of DALYs for IHD (reported by WHO Global Burden of Disease Study)

DALY for IHD attributable to road traffic noise in Western Europe (EUR-A), 2000-2002

	2000	2001	2002
MEN	4066000	4916000	4504894
Impact of traffic noise	121980	147480	135147
WOMEN	2970541	3144000	2828662
Impact of traffic noise	89116	94320	84860
Total impact of traffic noise	211096	241800	220007

Burden of annoyance in EU: exposure-based

	% Pop. exposed	% of people HA	Pop.	
Noise levels, Lden				DALYs, SW 0.02 >
< 55 dB(A)	46%	2.9		97640
55 – 65 dB(A)	42%	10.7		330289
66 – 75 dB(A)	11%	26.3		218219
> 75 dB(A)	1%	45		20946
Total	100%		366.5	667094

updated by using most recent exposure data

Summary of findings

Outcome	Exposure	Outcome	ER Relation	Impact fraction	DALYs in EUR-A
Cardiovasculardise>	Trafficnoise	MI and IHD	Pooled estimate	3% of IHD	211 096
	Lday				
Sleepdisturbance	Lnight	Severelydisturbed	Pooledestimate	2% of population	?
Annoyance	L den and Ldn	Highly annoyed	Pooled estimate	15% of population	667 094
Tinnitus	Traffic and	Ringing sound causi>	Notavailable	3% of tinnitus	9 328
	leisurenoise	sleepdisturbance		(0.75% of population)	
Cognitiveimpairment	Ldn	Reduction in cognitive>	Hypothetical curve	0.01%	45 0 36
Hearing loss	Leisurenoise	Moderate hearing loss	ISO	0.02% of 6-19 years old	6 800

Comparison with other environmental risks

Total impact of traffic noise	211096	
	EUR A	
Injuries in children 0-19, 2001	894947	
Road traffic noise burden of IHD, 2000	211096	
Occupational noise	164000	
Outdoor air pollution	151000	
Poor water and sanitation, 2001	25946	
Pb burden of MMR, children 0-4	14092	

Limit Values

Country	planning value	maximum limit	remarks
		(new situations) >	
BRD	day 55	day 59	Higher value for mixed areas>
	night 45	night 49	
Switzerland	day 50	day 55	Higher value for mixed areas >
	night 40	night 45	
Austria	55		LAeq 24 hr
France	dag 60	65	LAeq 8-20.00 hr>
	night 55		night 22-06
Denmark	55		LAeq 24 hr
UK	day 55	day 72	day from 0723. >
	night 45	night 66	
Netherlands	day 55/52	day 58/62/70>	35 dB(A)inside >
	night 45/42>	night 48/52/60 >	25 dB(A) at night >
Sweden	55		30 dB(A) inside >

WHO-guidelines 2000

Specific environment	Critical health effect	[hours]	LAeq	LAmax
Outdoor living area	Serious annoyance	16	55	;
	Moderate annoyance	16	50	
Dwelling, indoors	Speech intelligibility	16	35	;
inside bedrooms	sleep disturbance	. 8	30) 45
outside bedrooms	sleep disturbance	. 8	45	60
school class rooms	Speech intelligibilty	class hr	35	

Highly Annoyed

	Road	Rail	Aircraft	Industry
50 Lden	3%	2%	5%	5%
55 Lden	4%	4%	10%	8%
	Road	Rail	Aircraft	Industry
40 Lnight	3%	1%	4%	3%
45 Lnight	4%	2%	5%	4%

For the present purpose 50 Lden (40 Lnight) is assumed as the long term target

Number of events for 50 LAeq

Medium range, high volume

Design Targets

Range of distance	design target Lwa	Estimated Lmax
5-25 m urban road	08	55 (7.5m)
25-100 m railway	105	70 (25 m)
25-100 m motorway	95	70 (7.5m)
>500 m airport	120	60 (300 m)

Realistic Targets?

	Target	Range of Lwa	Effect of Best practice
Short range:			
cars, vans low speed (<50 km/hr)	80	85-95	-3: quiet tyre
			-5: quiet road surface
Short range: streetcars, metro	80	90-100	-5: smooth rail/wheel
Short range: outdoor machinery	80	82-108	
Medium range rail			
passenger trains	105	110-130	-3: smooth rail/wheel surface>
			-5: auxillary equipment
Medium range rail			
freight trains	105	125-130	smooth surfaces
			-3 wheel absorbers
			-5 : wheel screens
Medium range motorway			
cars (120 km/hr)	95	100-105	-3: quiet tyres
			-5:road surface
Medium range (>20 /hr)			
heavy duty	95	105-115	-3: quiet tyres
			-5: road surface
airplanes (>20000 kg)	120	125-170	
			MIZA Y

EUROPE.

Redesign?

Conclusions

- Long term environmental goals give an indication of design targets for machines
- Current technology doesn't succeed in reducing sufficiently the health impact
- Needed: more studies to verify these data
 - Scenario-studies
 - Cost-benefit issues
 - Design targets
- First impression: targets are well in reach of todays technology

Thank you for your attention

Classification of evidence

Sufficient evidence

 A causal relation has been established between exposure and an effect. In studies where coincidence, bias and distortion could reasonably be excluded, the relation could be observed and it is plausible that the effect is (also) caused by the exposure.

Limited evidence

A relation was observed between exposure and an effect in studies where coincidence, bias and distortion could not reasonably be excluded. The relation is, however, plausible. A direct relation between cause and effect has not been observed, but there is indirect evidence of good quality and the relation is plausible. Indirect evidence is assumed if exposure leads to an intermediate effect and other studies prove that the intermediate effect leads to the effect.

Insufficient evidence

 Available studies are of low quality and lack significance to allow conclusions about causality of the relation between exposure and effect.
 Plausibility of the relation is limited or absent

