

Back ground

- The flexible pedestrian legform impactor type GT prototype (Flex-GT-prototype (called as Flex-GTα in the previous report^{1), 2)})) was developed in Spring 2006.
- In this version, 1) the range of motion of the knee region, 2) the light weight of the bone parts, as well as 3) the biofidelity under assembly level (Thigh-Knee-Leg connected level) are improved.
- However, a validation of the biofidelity under assembly level was not completely conducted, so it still needs to be validated.
- Thus, further validation study on the biofidelity of this impactor, detailed computer simulation analysis was performed.

ased on design of experiment method. I 18 orthogonal table is utilized								
	in accigit	er experim		• • • • •	, and get			-
Simplified C	ar model specific	cations						
Simplified	K1	K2	K3	_H1	H2	H3	L1	L2
Car Model	(BLE stiffness*)	(BP stiffness**)	(SP stiffness**)	(BLE height)	(BP height)	(SP height)	(BLE lead)	(SP lead
ID	mm	JC***	JC***	mm	mm	mm	mm	mm
S1	0.4	0.7	0.6	650	450	250	125	-20
S2	0.4	0.7	0.8	700	490	270	200	0
S3	0.4	0.7	1.0	750	530	350	275	30
S4	0.4	0.8	0.6	650	490	270	275	30
S5	0.4	0.8	0.8	700	530	350	125	-20
S6	0.4	0.8	1.0	750	450	250	200	0
S7	0.4	1.0	0.6	700	450	350	200	30
S8	0.4	1.0	0.8	750	490	250	275	-20
S9	0.4	1.0	1.0	650	530	270	125	0
S10	0.6	0.7	0.6	750	530	270	200	-20
S11	0.6	0.7	0.8	650	450	350	275	0
S12	0.6	0.7	1.0	700	490	250	125	30
S13	0.6	0.8	0.6	700	530	250	275	0
S14	0.6	0.8	0.8	750	450	270	125	30
S15	0.6	0.8	1.0	650	490	350	200	-20
S16	0.6	1.0	0.6	750	490	350	125	0
S17	0.6	1.0	0.8	650	530	250	200	30
S18	0.6	1.0	1.0	700	450	270	275	-20

** Stiffness is changed by joint characteristics. *** JC: Joint characteristics

BLE: Bonnet leading edge, BP: Bumper, SP: Spoiler

Discussions and Conclusions

- From the results of this analysis, an impact height 50-75 mm higher than the base (25 mm) more correlated with the human model. One of the reasons for this is seemed as to be the effect of the presence or absence of the human upper body.
- The human upper body has great inertia force because of its size in mass relative to the leg, which tends to stay relatively at the initial position even after the leg crashes into a car. Therefore, during impact with a car, the upper body tends to lift up the leg overall.
- It is highly possible that these differences cause the difference in the loading condition on the tibia and the knee medial collateral ligament, and it is suggested that changing the impact height of the pedestrian legform impactor have effects to correct these differences.
- Moreover, the human upper body has the effect of inhibiting thigh movement due to its great inertia force.
- As mentioned above, the human upper body has great inertia force because of its size in mass relative to the leg, which tends to stay relatively at the initial position even after the leg crashes into a car. Therefore, during impact into a car, it inhibits thigh behavior to prevent the thigh from falling against the car.
- It is considered that shifting the impact position of the pedestrian legform impactor upwards especially facilitates rotation of the leg region of the pedestrian legform impactor, and as a result, the load occurring on the knee part has the same effect as in the human body.

Discussions and Conclusions, contd.

- Additionally, it has a chance that the difference in distribution of mass between the human body and the pedestrian legform impactor, while in the human body the bone part is very light in weight and a flesh part covers most of the mass, affects to the human and impactor differences.
- In the regulatory purpose pedestrian legform impactor, it is difficult to reduce the mass of the bone part to be equivalent to that of the human body because of various limitations such as incorporation of measuring censors, endurance, and testability.
- Moreover, to change the current impactor specification has a high risk for the developments itself (unexpected issue will be happened, that's from our a lot of experiments).
- To keep the current specification of the impactor and to select best impact heights is therefore one of a good practical method we believe.

References

- 1) UN/ECE/WP29/GRSP/INF-GR-PS/Flex-TEG: Information on the Flexible Pedestrian Legform Impactor GT Alpha (Flex-GT-alpha), TEG-021 (2006)
- 2) UN/ECE/WP29/GRSP/INF-GR-PS/Flex-TEG: Evaluation Activities on Injury Assessment Ability of the Flexible Pedestrian Legform Impactor GT Alpha (Flex-GT-alpha), TEG-022 (2006)
- 3) Takahashi Y., Kikuchi Y., Mori F., and Konosu A.: Advanced FE Lower Limb Model for Pedestrians, Proc. 18th International Technical Conference on the Enhanced Safety of Vehicles, Paper Number 218 (2003)
- Takahashi Y., Kikuchi Y., and Mori F.: Development of a Finite Element Model for the Pedestrian Pelvis and Lower Limb, Society of Automotive Engineers World Congress, SAE paper No. 2006-01-0683 (2006)

